C4graphGraph forms for C4 [ 92, 2 ] = R_46(25,24)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 92, 2 ] = R_46(25,24).

(I) Following is a form readable by MAGMA:

g:=Graph<92|{ {2, 3}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {1, 2}, {33, 34}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {37, 38}, {41, 42}, {45, 46}, {3, 4}, {27, 28}, {11, 12}, {19, 20}, {35, 36}, {43, 44}, {7, 8}, {23, 24}, {39, 40}, {32, 53}, {34, 55}, {40, 61}, {42, 63}, {64, 86}, {65, 87}, {33, 54}, {41, 62}, {64, 88}, {68, 92}, {67, 91}, {66, 90}, {65, 89}, {66, 88}, {70, 92}, {67, 89}, {35, 56}, {39, 60}, {36, 57}, {38, 59}, {68, 90}, {69, 91}, {15, 16}, {37, 58}, {27, 48}, {31, 52}, {28, 49}, {30, 51}, {1, 47}, {16, 62}, {17, 63}, {1, 46}, {29, 50}, {2, 48}, {3, 49}, {6, 52}, {7, 53}, {10, 56}, {11, 57}, {14, 60}, {15, 61}, {26, 47}, {4, 50}, {5, 51}, {12, 58}, {13, 59}, {8, 54}, {9, 55}, {31, 32}, {4, 71}, {24, 91}, {8, 75}, {12, 79}, {16, 83}, {20, 87}, {1, 68}, {25, 92}, {3, 70}, {9, 76}, {11, 78}, {17, 84}, {19, 86}, {2, 69}, {10, 77}, {18, 85}, {5, 72}, {23, 90}, {21, 88}, {7, 74}, {6, 73}, {22, 89}, {18, 64}, {31, 77}, {30, 76}, {27, 73}, {26, 72}, {23, 69}, {22, 68}, {19, 65}, {20, 66}, {29, 75}, {28, 74}, {21, 67}, {13, 80}, {15, 82}, {24, 70}, {25, 71}, {14, 81}, {47, 71}, {63, 87}, {62, 86}, {56, 80}, {57, 81}, {58, 82}, {59, 83}, {60, 84}, {61, 85}, {47, 69}, {63, 85}, {58, 80}, {59, 81}, {62, 84}, {43, 64}, {44, 65}, {46, 67}, {32, 78}, {33, 79}, {60, 82}, {61, 83}, {45, 66}, {34, 80}, {35, 81}, {38, 84}, {39, 85}, {42, 88}, {43, 89}, {46, 92}, {36, 82}, {37, 83}, {44, 90}, {45, 91}, {48, 70}, {49, 71}, {56, 78}, {57, 79}, {48, 72}, {49, 73}, {50, 74}, {51, 75}, {52, 76}, {53, 77}, {54, 78}, {55, 79}, {50, 72}, {51, 73}, {54, 76}, {55, 77}, {40, 86}, {41, 87}, {52, 74}, {53, 75} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (20, 65)(21, 44)(22, 90)(43, 88)(45, 67)(66, 89)
b: (12, 57)(13, 36)(14, 82)(35, 80)(37, 59)(58, 81)
c: (8, 53)(9, 32)(10, 78)(31, 76)(33, 55)(54, 77)
d: (22, 67)(23, 91)(45, 90)(46, 68)
e: (16, 61)(17, 40)(18, 86)(39, 84)(41, 63)(62, 85)
f: (10, 55)(11, 34)(12, 80)(33, 78)(35, 57)(56, 79)
g: (21, 66)(22, 90)(44, 89)(45, 67)
h: (11, 56)(12, 80)(34, 79)(35, 57)
m: (15, 60)(16, 84)(38, 83)(39, 61)
n1: (14, 59)(15, 38)(16, 84)(37, 82)(39, 61)(60, 83)
a1: (7, 52)(8, 76)(30, 75)(31, 53)
b1: (19, 64)(20, 88)(42, 87)(43, 65)
c1: (6, 51)(7, 30)(8, 76)(29, 74)(31, 53)(52, 75)
d1: (17, 62)(18, 86)(40, 85)(41, 63)
e1: (18, 63)(19, 42)(20, 88)(41, 86)(43, 65)(64, 87)
f1: (2, 68, 47, 46)(3, 22, 71, 67)(4, 21)(5, 20)(6, 19)(7, 18)(8, 17)(9, 16)(10, 15)(11, 14)(12, 13)(23, 25, 91, 70)(26, 45, 48, 90)(27, 44)(28, 43)(29, 42)(30, 41)(31, 40)(32, 39)(33, 38)(34, 37)(35, 36)(49, 89)(50, 88)(51, 87)(52, 86)(53, 85)(54, 84)(55, 83)(56, 82)(57, 81)(58, 80)(59, 79)(60, 78)(61, 77)(62, 76)(63, 75)(64, 74)(65, 73)(66, 72)(69, 92)
g1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46)(47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92)
h1: (13, 58)(14, 82)(36, 81)(37, 59)
m1: (9, 54)(10, 78)(32, 77)(33, 55)
n2: (5, 50)(6, 74)(28, 73)(29, 51)
a2: (4, 49)(5, 28)(6, 74)(27, 72)(29, 51)(50, 73)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 92, 2 ]
92
-1 2 46 68 47
-2 1 3 69 48
-3 2 4 70 49
-4 3 5 71 50
-5 4 6 72 51
-6 5 7 73 52
-7 6 8 74 53
-8 7 9 75 54
-9 55 8 10 76
-10 11 77 56 9
-11 12 78 57 10
-12 11 13 79 58
-13 12 14 80 59
-14 13 15 81 60
-15 14 16 82 61
-16 15 17 83 62
-17 16 18 84 63
-18 17 19 85 64
-19 18 20 86 65
-20 66 19 21 87
-21 22 88 67 20
-22 23 89 68 21
-23 22 24 90 69
-24 23 25 91 70
-25 24 26 92 71
-26 25 47 27 72
-27 26 48 28 73
-28 27 49 29 74
-29 28 50 30 75
-30 29 51 31 76
-31 77 30 52 32
-32 33 78 31 53
-33 34 79 32 54
-34 33 55 35 80
-35 34 56 36 81
-36 35 57 37 82
-37 36 58 38 83
-38 37 59 39 84
-39 38 60 40 85
-40 39 61 41 86
-41 40 62 42 87
-42 88 41 63 43
-43 44 89 42 64
-44 45 90 43 65
-45 44 66 46 91
-46 1 45 67 92
-47 1 69 26 71
-48 2 70 27 72
-49 3 71 28 73
-50 4 72 29 74
-51 5 73 30 75
-52 6 74 31 76
-53 77 7 75 32
-54 33 78 8 76
-55 77 34 79 9
-56 78 35 80 10
-57 11 79 36 81
-58 12 80 37 82
-59 13 81 38 83
-60 14 82 39 84
-61 15 83 40 85
-62 16 84 41 86
-63 17 85 42 87
-64 88 18 86 43
-65 44 89 19 87
-66 88 45 90 20
-67 89 46 91 21
-68 22 1 90 92
-69 23 2 47 91
-70 24 3 48 92
-71 25 47 4 49
-72 26 48 5 50
-73 27 49 6 51
-74 28 50 7 52
-75 29 51 8 53
-76 30 52 9 54
-77 55 31 53 10
-78 11 56 32 54
-79 33 55 12 57
-80 34 56 13 58
-81 35 57 14 59
-82 36 58 15 60
-83 37 59 16 61
-84 38 60 17 62
-85 39 61 18 63
-86 40 62 19 64
-87 41 63 20 65
-88 66 42 64 21
-89 22 67 43 65
-90 44 66 23 68
-91 45 67 24 69
-92 46 68 25 70
0

**************