C4graphGraph forms for C4 [ 94, 1 ] = W(47,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 94, 1 ] = W(47,2).

(I) Following is a form readable by MAGMA:

g:=Graph<94|{ {2, 3}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {20, 21}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {1, 2}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {3, 4}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {27, 28}, {19, 20}, {11, 12}, {35, 36}, {43, 44}, {51, 52}, {7, 8}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {15, 16}, {79, 80}, {47, 48}, {1, 47}, {16, 62}, {17, 63}, {1, 49}, {2, 50}, {3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11, 59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {2, 48}, {3, 49}, {6, 52}, {7, 53}, {10, 56}, {11, 57}, {14, 60}, {15, 61}, {4, 50}, {5, 51}, {12, 58}, {13, 59}, {8, 54}, {9, 55}, {31, 32}, {16, 64}, {29, 77}, {28, 76}, {27, 75}, {26, 74}, {25, 73}, {24, 72}, {23, 71}, {22, 70}, {21, 69}, {20, 68}, {19, 67}, {17, 65}, {18, 66}, {30, 78}, {31, 79}, {18, 64}, {27, 73}, {26, 72}, {23, 69}, {22, 68}, {19, 65}, {30, 76}, {31, 77}, {20, 66}, {29, 75}, {28, 74}, {21, 67}, {24, 70}, {25, 71}, {1, 94}, {32, 78}, {33, 79}, {48, 94}, {32, 80}, {33, 81}, {34, 82}, {35, 83}, {36, 84}, {37, 85}, {38, 86}, {39, 87}, {40, 88}, {41, 89}, {42, 90}, {43, 91}, {44, 92}, {45, 93}, {46, 94}, {34, 80}, {35, 81}, {38, 84}, {39, 85}, {42, 88}, {43, 89}, {46, 92}, {47, 93}, {36, 82}, {37, 83}, {44, 90}, {45, 91}, {40, 86}, {41, 87}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 49)
b: (7, 54)
c: (14, 61)
d: (24, 71)
e: (39, 86)
f: (5, 52)
g: (33, 80)
h: (11, 58)
m: (47, 94)
n1: (41, 88)
a1: (18, 65)
b1: (34, 81)
c1: (43, 90)
d1: (32, 79)
e1: (2, 47)(3, 46)(4, 45)(5, 44)(6, 43)(7, 42)(8, 41)(9, 40)(10, 39)(11, 38)(12, 37)(13, 36)(14, 35)(15, 34)(16, 33)(17, 32)(18, 31)(19, 30)(20, 29)(21, 28)(22, 27)(23, 26)(24, 25)(49, 94)(50, 93)(51, 92)(52, 91)(53, 90)(54, 89)(55, 88)(56, 87)(57, 86)(58, 85)(59, 84)(60, 83)(61, 82)(62, 81)(63, 80)(64, 79)(65, 78)(66, 77)(67, 76)(68, 75)(69, 74)(70, 73)(71, 72)
f1: (31, 78)
g1: (35, 82)
h1: (16, 63)
m1: (9, 56)
n2: (12, 59)
a2: (44, 91)
b2: (46, 93)
c2: (42, 89)
d2: (4, 51)
e2: (3, 50)
f2: (26, 73)
g2: (45, 92)
h2: (37, 84)
m2: (19, 66)
n3: (38, 85)
a3: (15, 62)
b3: (6, 53)
c3: (8, 55)
d3: (21, 68)
e3: (29, 76)
f3: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47)(48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94)
g3: (40, 87)
h3: (22, 69)
m3: (28, 75)
n4: (30, 77)
a4: (25, 72)
b4: (13, 60)
c4: (10, 57)
d4: (20, 67)
e4: (27, 74)
f4: (17, 64)
g4: (36, 83)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 94, 1 ]
94
-1 2 47 49 94
-2 1 3 48 50
-3 2 4 49 51
-4 3 5 50 52
-5 4 6 51 53
-6 5 7 52 54
-7 55 6 8 53
-8 56 7 9 54
-9 55 57 8 10
-10 11 56 58 9
-11 12 57 59 10
-12 11 13 58 60
-13 12 14 59 61
-14 13 15 60 62
-15 14 16 61 63
-16 15 17 62 64
-17 16 18 63 65
-18 66 17 19 64
-19 67 18 20 65
-20 66 68 19 21
-21 22 67 69 20
-22 23 68 70 21
-23 22 24 69 71
-24 23 25 70 72
-25 24 26 71 73
-26 25 27 72 74
-27 26 28 73 75
-28 27 29 74 76
-29 77 28 30 75
-30 78 29 31 76
-31 77 79 30 32
-32 33 78 80 31
-33 34 79 81 32
-34 33 35 80 82
-35 34 36 81 83
-36 35 37 82 84
-37 36 38 83 85
-38 37 39 84 86
-39 38 40 85 87
-40 88 39 41 86
-41 89 40 42 87
-42 88 90 41 43
-43 44 89 91 42
-44 45 90 92 43
-45 44 46 91 93
-46 45 47 92 94
-47 1 46 48 93
-48 2 47 49 94
-49 1 3 48 50
-50 2 4 49 51
-51 3 5 50 52
-52 4 6 51 53
-53 5 7 52 54
-54 55 6 8 53
-55 56 7 9 54
-56 55 57 8 10
-57 11 56 58 9
-58 12 57 59 10
-59 11 13 58 60
-60 12 14 59 61
-61 13 15 60 62
-62 14 16 61 63
-63 15 17 62 64
-64 16 18 63 65
-65 66 17 19 64
-66 67 18 20 65
-67 66 68 19 21
-68 22 67 69 20
-69 23 68 70 21
-70 22 24 69 71
-71 23 25 70 72
-72 24 26 71 73
-73 25 27 72 74
-74 26 28 73 75
-75 27 29 74 76
-76 77 28 30 75
-77 78 29 31 76
-78 77 79 30 32
-79 33 78 80 31
-80 34 79 81 32
-81 33 35 80 82
-82 34 36 81 83
-83 35 37 82 84
-84 36 38 83 85
-85 37 39 84 86
-86 38 40 85 87
-87 88 39 41 86
-88 89 40 42 87
-89 88 90 41 43
-90 44 89 91 42
-91 45 90 92 43
-92 44 46 91 93
-93 45 47 92 94
-94 1 46 48 93
0

**************