[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 1 ] =
W(48,2).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {2, 3}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84,
85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68,
69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {30, 31}, {28,
29}, {26, 27}, {24, 25}, {22, 23}, {20, 21}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {32, 33}, {34, 35}, {36, 37}, {38, 39},
{40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55},
{1, 2}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70},
{65, 66}, {61, 62}, {57, 58}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10},
{13, 14}, {17, 18}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54},
{3, 4}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {27, 28}, {11, 12},
{19, 20}, {35, 36}, {43, 44}, {51, 52}, {7, 8}, {87, 88}, {71, 72}, {55, 56},
{23, 24}, {39, 40}, {15, 16}, {79, 80}, {47, 48}, {16, 63}, {1, 48}, {2, 51},
{3, 50}, {4, 53}, {5, 52}, {6, 55}, {7, 54}, {8, 57}, {9, 56}, {10, 59}, {11,
58}, {12, 61}, {13, 60}, {14, 63}, {15, 62}, {1, 50}, {2, 49}, {5, 54}, {6, 53},
{9, 58}, {10, 57}, {13, 62}, {14, 61}, {3, 52}, {4, 51}, {11, 60}, {12, 59}, {7,
56}, {95, 96}, {8, 55}, {31, 32}, {15, 64}, {31, 80}, {47, 96}, {16, 65}, {29,
76}, {28, 77}, {27, 74}, {26, 75}, {25, 72}, {24, 73}, {23, 70}, {22, 71}, {21,
68}, {20, 69}, {19, 66}, {17, 64}, {18, 67}, {30, 79}, {31, 78}, {49, 96}, {17,
66}, {30, 77}, {29, 78}, {26, 73}, {25, 74}, {22, 69}, {21, 70}, {18, 65}, {19,
68}, {28, 75}, {27, 76}, {20, 67}, {23, 72}, {24, 71}, {1, 96}, {32, 79}, {48,
95}, {32, 81}, {33, 80}, {34, 83}, {35, 82}, {36, 85}, {37, 84}, {38, 87}, {39,
86}, {40, 89}, {41, 88}, {42, 91}, {43, 90}, {44, 93}, {45, 92}, {46, 95}, {47,
94}, {33, 82}, {34, 81}, {37, 86}, {38, 85}, {41, 90}, {42, 89}, {45, 94}, {46,
93}, {35, 84}, {36, 83}, {43, 92}, {44, 91}, {39, 88}, {63, 64}, {40, 87}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (26, 74) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (43, 91)
c: (2, 48)(3, 47)(4, 46)(5, 45)(6, 44)(7, 43)(8, 42)(9, 41)(10, 40)(11, 39)(12,
38)(13, 37)(14, 36)(15, 35)(16, 34)(17, 33)(18, 32)(19, 31)(20, 30)(21, 29)(22,
28)(23, 27)(24, 26)(50, 96)(51, 95)(52, 94)(53, 93)(54, 92)(55, 91)(56, 90)(57,
89)(58, 88)(59, 87)(60, 86)(61, 85)(62, 84)(63, 83)(64, 82)(65, 81)(66, 80)(67,
79)(68, 78)(69, 77)(70, 76)(71, 75)(72, 74)
d: (17, 65)
e: (33, 81)
f: (31, 79)
g: (34, 82)
h: (8, 56)
m: (48, 96)
n1: (2, 50)
a1: (19, 67)
b1: (47, 95)
c1: (35, 83)
d1: (6, 54)
e1: (36, 84)
f1: (32, 80)
g1: (18, 66)
h1: (13, 61)
m1: (44, 92)
n2: (38, 86)
a2: (16, 64)
b2: (12, 60)
c2: (11, 59)
d2: (20, 68)
e2: (4, 52)
f2: (30, 78)
g2: (45, 93)
h2: (15, 63)
m2: (3, 51)
n3: (10, 58)
a3: (21, 69)
b3: (27, 75)
c3: (42, 90)
d3: (14, 62)
e3: (40, 88)
f3: (7, 55)
g3: (28, 76)
h3: (22, 70)
m3: (9, 57)
n4: (41, 89)
a4: (46, 94)
b4: (24, 72)
c4: (25, 73)
d4: (39, 87)
e4: (29, 77)
f4: (37, 85)
g4: (5, 53)
h4: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)
C4[ 96, 1 ]
96
-1 2 48 50 96
-2 1 3 49 51
-3 2 4 50 52
-4 3 5 51 53
-5 4 6 52 54
-6 55 5 7 53
-7 56 6 8 54
-8 55 57 7 9
-9 56 58 8 10
-10 11 57 59 9
-11 12 58 60 10
-12 11 13 59 61
-13 12 14 60 62
-14 13 15 61 63
-15 14 16 62 64
-16 15 17 63 65
-17 66 16 18 64
-18 67 17 19 65
-19 66 68 18 20
-20 67 69 19 21
-21 22 68 70 20
-22 23 69 71 21
-23 22 24 70 72
-24 23 25 71 73
-25 24 26 72 74
-26 25 27 73 75
-27 26 28 74 76
-28 77 27 29 75
-29 78 28 30 76
-30 77 79 29 31
-31 78 80 30 32
-32 33 79 81 31
-33 34 80 82 32
-34 33 35 81 83
-35 34 36 82 84
-36 35 37 83 85
-37 36 38 84 86
-38 37 39 85 87
-39 88 38 40 86
-40 89 39 41 87
-41 88 90 40 42
-42 89 91 41 43
-43 44 90 92 42
-44 45 91 93 43
-45 44 46 92 94
-46 45 47 93 95
-47 46 48 94 96
-48 1 47 49 95
-49 2 48 50 96
-50 1 3 49 51
-51 2 4 50 52
-52 3 5 51 53
-53 4 6 52 54
-54 55 5 7 53
-55 56 6 8 54
-56 55 57 7 9
-57 56 58 8 10
-58 11 57 59 9
-59 12 58 60 10
-60 11 13 59 61
-61 12 14 60 62
-62 13 15 61 63
-63 14 16 62 64
-64 15 17 63 65
-65 66 16 18 64
-66 67 17 19 65
-67 66 68 18 20
-68 67 69 19 21
-69 22 68 70 20
-70 23 69 71 21
-71 22 24 70 72
-72 23 25 71 73
-73 24 26 72 74
-74 25 27 73 75
-75 26 28 74 76
-76 77 27 29 75
-77 78 28 30 76
-78 77 79 29 31
-79 78 80 30 32
-80 33 79 81 31
-81 34 80 82 32
-82 33 35 81 83
-83 34 36 82 84
-84 35 37 83 85
-85 36 38 84 86
-86 37 39 85 87
-87 88 38 40 86
-88 89 39 41 87
-89 88 90 40 42
-90 89 91 41 43
-91 44 90 92 42
-92 45 91 93 43
-93 44 46 92 94
-94 45 47 93 95
-95 46 48 94 96
-96 1 47 49 95
0