[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 5 ] =
{4,4}_<10,2>.
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {2, 3}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84,
85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68,
69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {30, 31}, {28, 29}, {26,
27}, {24, 25}, {22, 23}, {20, 21}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41},
{42, 43}, {44, 45}, {46, 47}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {1, 2},
{93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66},
{61, 62}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {3, 4},
{91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {27, 28}, {11, 12}, {19, 20},
{35, 36}, {43, 44}, {51, 52}, {7, 8}, {87, 88}, {71, 72}, {23, 24}, {39, 40},
{55, 56}, {15, 16}, {79, 80}, {47, 48}, {16, 54}, {25, 63}, {24, 62}, {17, 55},
{18, 56}, {23, 61}, {22, 60}, {19, 57}, {20, 58}, {21, 59}, {1, 49}, {2, 50},
{3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11,
59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {1, 48}, {11, 49}, {14, 52}, {15,
53}, {12, 50}, {13, 51}, {31, 32}, {95, 96}, {16, 64}, {30, 78}, {29, 77}, {28,
76}, {27, 75}, {26, 74}, {25, 73}, {24, 72}, {23, 71}, {22, 70}, {21, 69}, {20,
68}, {17, 65}, {18, 66}, {19, 67}, {31, 79}, {48, 96}, {49, 96}, {1, 87}, {8,
94}, {9, 95}, {2, 88}, {30, 68}, {27, 65}, {26, 64}, {3, 89}, {6, 92}, {7, 93},
{31, 69}, {4, 90}, {29, 67}, {28, 66}, {5, 91}, {32, 70}, {33, 71}, {40, 78},
{41, 79}, {48, 86}, {10, 96}, {34, 72}, {35, 73}, {38, 76}, {39, 77}, {36, 74},
{37, 75}, {32, 80}, {33, 81}, {34, 82}, {35, 83}, {36, 84}, {37, 85}, {38, 86},
{39, 87}, {40, 88}, {41, 89}, {42, 90}, {43, 91}, {44, 92}, {45, 93}, {46, 94},
{47, 95}, {42, 80}, {43, 81}, {46, 84}, {47, 85}, {44, 82}, {45, 83}, {63, 64}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 48)(3, 47)(4, 46)(5, 45)(6, 44)(7, 43)(8, 42)(9, 41)(10, 40)(11, 39)(12,
38)(13, 37)(14, 36)(15, 35)(16, 34)(17, 33)(18, 32)(19, 31)(20, 30)(21, 29)(22,
28)(23, 27)(24, 26)(49, 87)(50, 86)(51, 85)(52, 84)(53, 83)(54, 82)(55, 81)(56,
80)(57, 79)(58, 78)(59, 77)(60, 76)(61, 75)(62, 74)(63, 73)(64, 72)(65, 71)(66,
70)(67, 69)(88, 96)(89, 95)(90, 94)(91, 93)
c: (2, 87)(3, 39)(4, 77)(5, 29)(6, 67)(7, 19)(8, 57)(10, 95)(11, 47)(12, 85)(13,
37)(14, 75)(15, 27)(16, 65)(18, 55)(20, 93)(21, 45)(22, 83)(23, 35)(24, 73)(26,
63)(28, 53)(30, 91)(31, 43)(32, 81)(34, 71)(36, 61)(38, 51)(40, 89)(42, 79)(44,
69)(46, 59)(48, 49)(50, 86)(52, 76)(54, 66)(58, 94)(60, 84)(62, 74)(68, 92)(70,
82)(78, 90)
C4[ 96, 5 ]
96
-1 2 48 49 87
-2 88 1 3 50
-3 89 2 4 51
-4 90 3 5 52
-5 91 4 6 53
-6 92 5 7 54
-7 55 93 6 8
-8 56 94 7 9
-9 57 95 8 10
-10 11 58 96 9
-11 12 59 49 10
-12 11 13 60 50
-13 12 14 61 51
-14 13 15 62 52
-15 14 16 63 53
-16 15 17 64 54
-17 55 16 18 65
-18 66 56 17 19
-19 67 57 18 20
-20 68 58 19 21
-21 22 69 59 20
-22 23 70 60 21
-23 22 24 71 61
-24 23 25 72 62
-25 24 26 73 63
-26 25 27 74 64
-27 26 28 75 65
-28 66 27 29 76
-29 77 67 28 30
-30 78 68 29 31
-31 79 69 30 32
-32 33 80 70 31
-33 34 81 71 32
-34 33 35 82 72
-35 34 36 83 73
-36 35 37 84 74
-37 36 38 85 75
-38 37 39 86 76
-39 77 38 40 87
-40 88 78 39 41
-41 89 79 40 42
-42 90 80 41 43
-43 44 91 81 42
-44 45 92 82 43
-45 44 46 93 83
-46 45 47 94 84
-47 46 48 95 85
-48 1 47 96 86
-49 11 1 50 96
-50 12 2 49 51
-51 13 3 50 52
-52 14 4 51 53
-53 15 5 52 54
-54 55 16 6 53
-55 56 17 7 54
-56 55 57 18 8
-57 56 58 19 9
-58 57 59 20 10
-59 11 58 60 21
-60 22 12 59 61
-61 23 13 60 62
-62 24 14 61 63
-63 25 15 62 64
-64 26 16 63 65
-65 66 27 17 64
-66 67 28 18 65
-67 66 68 29 19
-68 67 69 30 20
-69 68 70 31 21
-70 22 69 71 32
-71 33 23 70 72
-72 34 24 71 73
-73 35 25 72 74
-74 36 26 73 75
-75 37 27 74 76
-76 77 38 28 75
-77 78 39 29 76
-78 77 79 40 30
-79 78 80 41 31
-80 79 81 42 32
-81 33 80 82 43
-82 44 34 81 83
-83 45 35 82 84
-84 46 36 83 85
-85 47 37 84 86
-86 48 38 85 87
-87 88 1 39 86
-88 89 2 40 87
-89 88 90 3 41
-90 89 91 4 42
-91 90 92 5 43
-92 44 91 93 6
-93 45 92 94 7
-94 46 93 95 8
-95 47 94 96 9
-96 48 49 95 10
0