[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 12 ] =
R_48(38,13).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {2, 3}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {20,
21}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47},
{1, 2}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {33,
34}, {37, 38}, {41, 42}, {45, 46}, {3, 4}, {27, 28}, {11, 12}, {19, 20}, {35,
36}, {43, 44}, {48, 58}, {50, 63}, {82, 95}, {80, 93}, {66, 79}, {64, 77}, {7,
8}, {81, 94}, {65, 78}, {23, 24}, {39, 40}, {49, 62}, {67, 80}, {79, 92}, {75,
88}, {71, 84}, {68, 81}, {78, 91}, {76, 89}, {70, 83}, {39, 49}, {46, 56}, {47,
57}, {69, 82}, {77, 90}, {40, 50}, {41, 51}, {44, 54}, {45, 55}, {72, 85}, {74,
87}, {42, 52}, {43, 53}, {15, 16}, {73, 86}, {47, 48}, {1, 49}, {2, 50}, {3,
51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11, 59},
{12, 60}, {13, 61}, {14, 62}, {15, 63}, {1, 48}, {83, 96}, {1, 59}, {4, 62}, {5,
63}, {2, 60}, {3, 61}, {31, 32}, {6, 64}, {23, 81}, {22, 80}, {7, 65}, {14, 72},
{15, 73}, {30, 88}, {31, 89}, {38, 96}, {8, 66}, {29, 87}, {28, 86}, {25, 83},
{24, 82}, {9, 67}, {12, 70}, {13, 71}, {10, 68}, {27, 85}, {26, 84}, {11, 69},
{16, 64}, {29, 77}, {28, 76}, {27, 75}, {26, 74}, {25, 73}, {24, 72}, {23, 71},
{22, 70}, {21, 69}, {20, 68}, {17, 65}, {18, 66}, {19, 67}, {30, 78}, {31, 79},
{48, 96}, {16, 74}, {21, 79}, {20, 78}, {17, 75}, {61, 96}, {18, 76}, {19, 77},
{52, 87}, {60, 95}, {56, 91}, {49, 84}, {59, 94}, {51, 86}, {57, 92}, {50, 85},
{58, 93}, {53, 88}, {55, 90}, {54, 89}, {32, 80}, {33, 81}, {34, 82}, {35, 83},
{36, 84}, {37, 85}, {38, 86}, {39, 87}, {40, 88}, {41, 89}, {42, 90}, {43, 91},
{44, 92}, {45, 93}, {46, 94}, {47, 95}, {51, 64}, {63, 76}, {59, 72}, {55, 68},
{52, 65}, {62, 75}, {60, 73}, {54, 67}, {53, 66}, {61, 74}, {32, 90}, {33, 91},
{36, 94}, {37, 95}, {56, 69}, {58, 71}, {34, 92}, {35, 93}, {57, 70} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 59)(3, 94)(4, 46)(5, 56)(6, 91)(7, 43)(8, 53)(9, 88)(10, 40)(11, 50)(12,
85)(13, 37)(14, 95)(15, 82)(16, 34)(17, 92)(18, 79)(19, 31)(20, 89)(21, 76)(22,
28)(23, 86)(24, 73)(26, 83)(27, 70)(29, 80)(30, 67)(32, 77)(33, 64)(35, 74)(36,
61)(38, 71)(39, 58)(41, 68)(42, 55)(44, 65)(45, 52)(47, 62)(48, 49)(51, 81)(54,
78)(57, 75)(60, 72)(63, 69)(84, 96)(87, 93)
c: (2, 48)(3, 47)(4, 46)(5, 45)(6, 44)(7, 43)(8, 42)(9, 41)(10, 40)(11, 39)(12,
38)(13, 37)(14, 36)(15, 35)(16, 34)(17, 33)(18, 32)(19, 31)(20, 30)(21, 29)(22,
28)(23, 27)(24, 26)(49, 59)(50, 58)(51, 57)(52, 56)(53, 55)(60, 96)(61, 95)(62,
94)(63, 93)(64, 92)(65, 91)(66, 90)(67, 89)(68, 88)(69, 87)(70, 86)(71, 85)(72,
84)(73, 83)(74, 82)(75, 81)(76, 80)(77, 79)
C4[ 96, 12 ]
96
-1 2 48 59 49
-2 1 3 60 50
-3 2 4 61 51
-4 3 5 62 52
-5 4 6 63 53
-6 5 7 64 54
-7 55 6 8 65
-8 66 56 7 9
-9 67 57 8 10
-10 11 68 58 9
-11 12 69 59 10
-12 11 13 70 60
-13 12 14 71 61
-14 13 15 72 62
-15 14 16 73 63
-16 15 17 74 64
-17 16 18 75 65
-18 66 17 19 76
-19 77 67 18 20
-20 78 68 19 21
-21 22 79 69 20
-22 23 80 70 21
-23 22 24 81 71
-24 23 25 82 72
-25 24 26 83 73
-26 25 27 84 74
-27 26 28 85 75
-28 27 29 86 76
-29 77 28 30 87
-30 88 78 29 31
-31 89 79 30 32
-32 33 90 80 31
-33 34 91 81 32
-34 33 35 92 82
-35 34 36 93 83
-36 35 37 94 84
-37 36 38 95 85
-38 37 39 96 86
-39 38 49 40 87
-40 88 39 50 41
-41 89 40 51 42
-42 90 41 52 43
-43 44 91 42 53
-44 45 92 43 54
-45 44 55 46 93
-46 45 56 47 94
-47 46 57 48 95
-48 1 47 58 96
-49 1 39 62 84
-50 2 40 63 85
-51 3 41 64 86
-52 4 42 65 87
-53 66 88 5 43
-54 44 67 89 6
-55 45 68 90 7
-56 46 69 91 8
-57 47 70 92 9
-58 48 71 93 10
-59 11 1 72 94
-60 12 2 73 95
-61 13 3 74 96
-62 14 4 49 75
-63 15 5 50 76
-64 77 16 6 51
-65 78 17 7 52
-66 79 18 8 53
-67 80 19 9 54
-68 55 81 20 10
-69 11 56 82 21
-70 22 12 57 83
-71 23 13 58 84
-72 24 14 59 85
-73 25 15 60 86
-74 26 16 61 87
-75 88 27 17 62
-76 89 28 18 63
-77 90 29 19 64
-78 91 30 20 65
-79 66 92 31 21
-80 22 67 93 32
-81 33 23 68 94
-82 34 24 69 95
-83 35 25 70 96
-84 36 26 49 71
-85 37 27 50 72
-86 38 28 51 73
-87 39 29 52 74
-88 40 30 53 75
-89 41 31 54 76
-90 55 77 42 32
-91 33 56 78 43
-92 44 34 57 79
-93 45 35 58 80
-94 46 36 59 81
-95 47 37 60 82
-96 48 38 61 83
0