[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 15 ] =
PL(MSY(4,12,5,0)).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {37, 52}, {40, 57}, {38, 52}, {39, 53}, {38, 53}, {37, 49}, {41,
61}, {40, 60}, {40, 61}, {38, 49}, {35, 59}, {36, 60}, {39, 60}, {38, 56}, {39,
57}, {35, 60}, {39, 56}, {36, 59}, {29, 63}, {28, 63}, {30, 56}, {31, 56}, {31,
55}, {26, 51}, {30, 55}, {16, 58}, {25, 51}, {16, 59}, {25, 52}, {16, 62}, {17,
63}, {26, 52}, {16, 63}, {17, 62}, {1, 49}, {6, 54}, {2, 50}, {7, 54}, {11, 58},
{7, 53}, {11, 57}, {1, 50}, {6, 53}, {2, 49}, {15, 59}, {12, 57}, {15, 58}, {12,
58}, {5, 61}, {15, 55}, {14, 54}, {4, 61}, {15, 54}, {14, 55}, {4, 62}, {5, 62},
{14, 50}, {14, 51}, {13, 51}, {13, 50}, {22, 86}, {23, 87}, {27, 91}, {28, 92},
{32, 96}, {8, 73}, {23, 86}, {22, 87}, {12, 77}, {33, 96}, {8, 74}, {12, 78},
{24, 90}, {24, 91}, {2, 70}, {22, 82}, {3, 70}, {22, 83}, {37, 96}, {3, 69},
{21, 83}, {24, 94}, {2, 69}, {21, 82}, {24, 95}, {27, 92}, {28, 91}, {9, 65},
{10, 66}, {25, 80}, {29, 84}, {30, 84}, {9, 66}, {10, 65}, {1, 77}, {23, 91},
{7, 74}, {23, 90}, {30, 83}, {7, 73}, {29, 83}, {1, 78}, {18, 66}, {48, 96},
{18, 67}, {13, 95}, {17, 67}, {26, 72}, {13, 94}, {17, 66}, {27, 72}, {31, 76},
{5, 81}, {19, 71}, {18, 70}, {9, 93}, {6, 82}, {31, 75}, {8, 93}, {19, 70}, {18,
71}, {8, 94}, {25, 79}, {5, 82}, {9, 94}, {6, 81}, {19, 75}, {3, 90}, {19, 74},
{3, 89}, {21, 79}, {20, 78}, {20, 79}, {21, 78}, {10, 86}, {27, 71}, {28, 64},
{4, 89}, {11, 86}, {26, 71}, {29, 64}, {4, 90}, {20, 74}, {11, 85}, {10, 85},
{20, 75}, {44, 76}, {45, 77}, {34, 67}, {44, 77}, {33, 67}, {43, 73}, {42, 72},
{43, 72}, {33, 68}, {44, 73}, {34, 68}, {43, 76}, {40, 64}, {41, 65}, {41, 64},
{48, 89}, {32, 75}, {42, 65}, {36, 79}, {32, 76}, {48, 92}, {41, 68}, {48, 93},
{42, 68}, {43, 69}, {42, 69}, {47, 92}, {35, 87}, {36, 80}, {34, 87}, {46, 88},
{47, 89}, {47, 88}, {37, 93}, {45, 84}, {34, 88}, {47, 85}, {46, 84}, {35, 88},
{46, 85}, {44, 80}, {45, 81}, {45, 80}, {33, 95}, {32, 95}, {46, 81} }>;
(II) A more general form is to represent the graph as the orbit of {37, 52}
under the group generated by the following permutations:
a: (1, 13)(2, 14)(3, 15)(4, 16)(5, 17)(6, 18)(7, 19)(8, 20)(9, 21)(10, 22)(11,
23)(12, 24)(25, 37)(26, 38)(27, 39)(28, 40)(29, 41)(30, 42)(31, 43)(32, 44)(33,
45)(34, 46)(35, 47)(36, 48)(49, 51)(53, 71)(54, 70)(55, 69)(56, 72)(57, 91)(58,
90)(59, 89)(60, 92)(61, 63)(65, 83)(66, 82)(67, 81)(68, 84)(73, 75)(77, 95)(78,
94)(79, 93)(80, 96)(85, 87) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (13, 37)(14, 38)(15, 39)(16, 40)(17, 41)(18, 42)(19, 43)(20, 44)(21, 45)(22,
46)(23, 47)(24, 48)(49, 50)(51, 52)(53, 54)(55, 56)(57, 58)(59, 60)(61, 62)(63,
64)(65, 66)(67, 68)(69, 70)(71, 72)(73, 74)(75, 76)(77, 78)(79, 80)(81, 82)(83,
84)(85, 86)(87, 88)(89, 90)(91, 92)(93, 94)(95, 96)
c: (2, 12)(3, 11)(4, 10)(5, 9)(6, 8)(13, 21)(14, 20)(15, 19)(16, 18)(22, 24)(26,
36)(27, 35)(28, 34)(29, 33)(30, 32)(37, 45)(38, 44)(39, 43)(40, 42)(46, 48)(49,
77)(50, 78)(51, 79)(52, 80)(53, 73)(54, 74)(55, 75)(56, 76)(57, 69)(58, 70)(59,
71)(60, 72)(61, 65)(62, 66)(63, 67)(64, 68)(81, 93)(82, 94)(83, 95)(84, 96)(85,
89)(86, 90)(87, 91)(88, 92)
d: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)(13, 18, 23, 16, 21, 14, 19, 24, 17,
22, 15, 20)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 42, 47, 40, 45,
38, 43, 48, 41, 46, 39, 44)(49, 69, 89, 61, 81, 53, 73, 93, 65, 85, 57, 77)(50,
70, 90, 62, 82, 54, 74, 94, 66, 86, 58, 78)(51, 71, 91, 63, 83, 55, 75, 95, 67,
87, 59, 79)(52, 72, 92, 64, 84, 56, 76, 96, 68, 88, 60, 80)
C4[ 96, 15 ]
96
-1 77 78 49 50
-2 69 70 49 50
-3 89 90 69 70
-4 89 90 61 62
-5 81 82 61 62
-6 81 82 53 54
-7 73 74 53 54
-8 93 94 73 74
-9 66 93 94 65
-10 66 85 86 65
-11 57 58 85 86
-12 77 78 57 58
-13 50 94 51 95
-14 55 50 51 54
-15 55 58 59 54
-16 58 59 62 63
-17 66 67 62 63
-18 66 67 70 71
-19 70 71 74 75
-20 78 79 74 75
-21 78 79 82 83
-22 82 83 86 87
-23 90 91 86 87
-24 90 91 94 95
-25 79 80 51 52
-26 71 72 51 52
-27 91 92 71 72
-28 91 92 63 64
-29 83 84 63 64
-30 55 56 83 84
-31 55 56 75 76
-32 95 96 75 76
-33 67 68 95 96
-34 88 67 68 87
-35 88 59 60 87
-36 79 80 59 60
-37 49 93 52 96
-38 56 49 52 53
-39 56 57 60 53
-40 57 60 61 64
-41 68 61 64 65
-42 68 69 72 65
-43 69 72 73 76
-44 77 80 73 76
-45 77 80 81 84
-46 88 81 84 85
-47 88 89 92 85
-48 89 92 93 96
-49 1 2 37 38
-50 1 2 13 14
-51 13 14 25 26
-52 25 26 37 38
-53 38 6 39 7
-54 14 15 6 7
-55 14 15 30 31
-56 38 39 30 31
-57 11 12 39 40
-58 11 12 15 16
-59 35 36 15 16
-60 35 36 39 40
-61 4 5 40 41
-62 4 5 16 17
-63 16 17 28 29
-64 28 29 40 41
-65 41 9 42 10
-66 17 18 9 10
-67 33 34 17 18
-68 33 34 41 42
-69 2 3 42 43
-70 2 3 18 19
-71 26 27 18 19
-72 26 27 42 43
-73 44 7 8 43
-74 7 8 19 20
-75 19 20 31 32
-76 44 31 32 43
-77 44 1 12 45
-78 1 12 20 21
-79 25 36 20 21
-80 44 45 25 36
-81 45 46 5 6
-82 22 5 6 21
-83 22 29 30 21
-84 45 46 29 30
-85 11 46 47 10
-86 11 22 23 10
-87 22 23 34 35
-88 34 35 46 47
-89 3 47 4 48
-90 23 24 3 4
-91 23 24 27 28
-92 47 48 27 28
-93 37 48 8 9
-94 13 24 8 9
-95 33 13 24 32
-96 33 37 48 32
0