C4graphConstructions for C4[ 96, 15 ] = PL(MSY(4,12,5,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 96, 15 ]. See Glossary for some detail.

PL(MSY( 4, 12, 5, 0)) = PL(MSY( 4, 12, 7, 0)) = PL(MC3( 4, 12, 1, 11, 5, 0, 1), [4^12, 12^4])

      = PL(MC3( 4, 12, 1, 11, 7, 0, 1), [4^12, 12^4]) = PL(KE_ 12( 1, 7, 2, 7, 1), [4^12, 12^4]) = PL(Curtain_ 12( 1, 6, 4, 9, 10), [4^12, 12^4])

      = PL(Br( 4, 12; 5)) = PL(ATD[ 12, 3]#DCyc[ 4]) = PL(CS(W( 6, 2)[ 12^ 2], 0))

      = PL(CSI(W( 6, 2)[ 12^ 2], 4)) = BGCG(W( 6, 2), C_ 4, {2, 4, 5, 7', 8'}) = SS[ 96, 7]

     

Cyclic coverings

mod 12:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 7 8
4 - - - - 11 0 7 6
5 0 0 11 1 - - - -
6 0 0 0 0 - - - -
7 0 10 5 5 - - - -
8 0 10 4 6 - - - -

mod 12:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 5 0 5 -
3 - - - - - - 0 1 0 1
4 - - - - 0 5 - - 0 5
5 0 11 - - 0 7 - - - -
6 0 11 0 7 - - - - - -
7 - 0 7 0 11 - - - - -
8 - - 0 11 0 7 - - - -

mod 12:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - - 0 1 7 8 -
4 - - - - 0 1 - - 7 8
5 0 0 - 0 11 - - - -
6 0 0 0 11 - - - - -
7 0 10 4 5 - - - - -
8 0 10 - 4 5 - - - -

mod 12:
12345678
1 - - - - 0 0 - 0 9
2 - - - - 0 0 0 9 -
3 - - - - 1 7 0 9 -
4 - - - - 1 7 - 5 8
5 0 0 11 11 - - - -
6 0 0 5 5 - - - -
7 - 0 3 0 3 - - - - -
8 0 3 - - 4 7 - - - -

mod 12:
12345678
1 - - - - 0 1 0 7 - -
2 - - - - 0 0 0 0
3 - - - - - - 0 5 0 11
4 - - - - 9 3 5 11
5 0 11 0 - 3 - - - -
6 0 5 0 - 9 - - - -
7 - 0 0 7 7 - - - -
8 - 0 0 1 1 - - - -