C4graphGraph forms for C4 [ 96, 16 ] = PL(MSY(4,12,5,6))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 16 ] = PL(MSY(4,12,5,6)).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {44, 60}, {45, 61}, {44, 61}, {45, 60}, {37, 49}, {32, 55}, {38, 49}, {32, 56}, {44, 52}, {44, 53}, {36, 63}, {37, 56}, {38, 56}, {43, 53}, {39, 57}, {38, 57}, {43, 52}, {20, 54}, {30, 60}, {20, 55}, {31, 60}, {19, 55}, {31, 59}, {19, 54}, {30, 59}, {25, 63}, {31, 56}, {31, 55}, {26, 51}, {20, 62}, {21, 63}, {25, 51}, {20, 63}, {21, 62}, {25, 52}, {26, 52}, {1, 49}, {2, 50}, {7, 54}, {12, 61}, {7, 53}, {12, 62}, {1, 50}, {2, 49}, {14, 58}, {15, 59}, {14, 59}, {15, 58}, {1, 61}, {14, 50}, {6, 58}, {7, 58}, {14, 51}, {8, 53}, {7, 57}, {13, 51}, {8, 54}, {1, 62}, {13, 50}, {6, 57}, {5, 69}, {32, 96}, {18, 82}, {6, 70}, {23, 87}, {27, 91}, {18, 83}, {33, 96}, {23, 86}, {26, 91}, {17, 83}, {5, 70}, {17, 82}, {6, 69}, {27, 88}, {10, 78}, {28, 88}, {11, 78}, {11, 77}, {24, 94}, {26, 92}, {10, 77}, {24, 95}, {27, 92}, {18, 90}, {19, 91}, {11, 66}, {19, 90}, {18, 91}, {11, 65}, {42, 96}, {28, 87}, {43, 96}, {5, 73}, {15, 67}, {27, 87}, {4, 73}, {15, 66}, {12, 65}, {4, 74}, {12, 66}, {24, 86}, {5, 74}, {24, 87}, {22, 70}, {28, 76}, {4, 85}, {22, 71}, {29, 76}, {4, 86}, {21, 71}, {16, 66}, {13, 95}, {13, 94}, {21, 70}, {16, 67}, {9, 93}, {3, 86}, {8, 93}, {29, 72}, {3, 85}, {8, 94}, {29, 75}, {30, 72}, {9, 94}, {28, 75}, {2, 90}, {10, 82}, {9, 81}, {22, 78}, {23, 79}, {3, 90}, {22, 79}, {23, 78}, {25, 64}, {30, 71}, {3, 89}, {17, 75}, {16, 74}, {29, 71}, {2, 89}, {17, 74}, {16, 75}, {10, 81}, {9, 82}, {35, 67}, {41, 73}, {40, 72}, {36, 68}, {40, 73}, {46, 76}, {47, 77}, {46, 77}, {47, 76}, {36, 64}, {48, 84}, {48, 85}, {38, 64}, {39, 65}, {35, 68}, {39, 64}, {36, 67}, {45, 69}, {40, 65}, {45, 68}, {46, 68}, {46, 69}, {35, 79}, {48, 92}, {34, 79}, {48, 93}, {39, 72}, {34, 83}, {41, 88}, {33, 83}, {43, 89}, {42, 88}, {34, 80}, {35, 80}, {42, 89}, {33, 84}, {34, 84}, {37, 93}, {41, 81}, {40, 80}, {37, 92}, {41, 80}, {47, 85}, {42, 81}, {47, 84}, {33, 95}, {32, 95} }>;

(II) A more general form is to represent the graph as the orbit of {44, 60} under the group generated by the following permutations:

a: (1, 13, 33, 47, 11, 15, 31, 37, 9, 17, 29, 39, 7, 19, 27, 41, 5, 21, 25, 43, 3, 23, 35, 45)(2, 24, 34, 46, 12, 14, 32, 48, 10, 16, 30, 38, 8, 18, 28, 40, 6, 20, 26, 42, 4, 22, 36, 44)(49, 94, 83, 76, 65, 58, 55, 92, 81, 74, 71, 64, 53, 90, 87, 80, 69, 62, 51, 96, 85, 78, 67, 60)(50, 95, 84, 77, 66, 59, 56, 93, 82, 75, 72, 57, 54, 91, 88, 73, 70, 63, 52, 89, 86, 79, 68, 61)
b: (13, 37)(14, 38)(15, 39)(16, 40)(17, 41)(18, 42)(19, 43)(20, 44)(21, 45)(22, 46)(23, 47)(24, 48)(25, 31)(26, 32)(27, 33)(28, 34)(29, 35)(30, 36)(49, 50)(51, 56)(52, 55)(53, 54)(57, 58)(59, 64)(60, 63)(61, 62)(65, 66)(67, 72)(68, 71)(69, 70)(73, 74)(75, 80)(76, 79)(77, 78)(81, 82)(83, 88)(84, 87)(85, 86)(89, 90)(91, 96)(92, 95)(93, 94)
c: (2, 12)(3, 11)(4, 10)(5, 9)(6, 8)(13, 21)(14, 20)(15, 19)(16, 18)(22, 24)(26, 36)(27, 35)(28, 34)(29, 33)(30, 32)(37, 45)(38, 44)(39, 43)(40, 42)(46, 48)(49, 61)(50, 62)(51, 63)(52, 64)(53, 57)(54, 58)(55, 59)(56, 60)(65, 89)(66, 90)(67, 91)(68, 92)(69, 93)(70, 94)(71, 95)(72, 96)(73, 81)(74, 82)(75, 83)(76, 84)(77, 85)(78, 86)(79, 87)(80, 88)
d: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)(13, 18, 23, 16, 21, 14, 19, 24, 17, 22, 15, 20)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 42, 47, 40, 45, 38, 43, 48, 41, 46, 39, 44)(49, 89, 85, 73, 69, 57, 53, 93, 81, 77, 65, 61)(50, 90, 86, 74, 70, 58, 54, 94, 82, 78, 66, 62)(51, 91, 87, 75, 71, 59, 55, 95, 83, 79, 67, 63)(52, 92, 88, 76, 72, 60, 56, 96, 84, 80, 68, 64)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 16 ]
96
-1 49 50 61 62
-2 89 90 49 50
-3 89 90 85 86
-4 73 74 85 86
-5 69 70 73 74
-6 57 58 69 70
-7 57 58 53 54
-8 93 94 53 54
-9 81 82 93 94
-10 77 78 81 82
-11 66 77 78 65
-12 66 61 62 65
-13 50 94 51 95
-14 58 59 50 51
-15 66 67 58 59
-16 66 67 74 75
-17 82 83 74 75
-18 90 91 82 83
-19 55 90 91 54
-20 55 62 63 54
-21 70 71 62 63
-22 78 79 70 71
-23 78 79 86 87
-24 94 95 86 87
-25 51 52 63 64
-26 91 92 51 52
-27 88 91 92 87
-28 88 75 76 87
-29 71 72 75 76
-30 59 60 71 72
-31 55 56 59 60
-32 55 56 95 96
-33 83 84 95 96
-34 79 80 83 84
-35 67 68 79 80
-36 67 68 63 64
-37 56 92 49 93
-38 56 57 49 64
-39 57 72 64 65
-40 80 72 73 65
-41 88 80 81 73
-42 88 89 81 96
-43 89 52 96 53
-44 60 61 52 53
-45 68 69 60 61
-46 77 68 69 76
-47 77 84 85 76
-48 92 93 84 85
-49 1 2 37 38
-50 1 2 13 14
-51 13 14 25 26
-52 44 25 26 43
-53 44 7 8 43
-54 7 8 19 20
-55 19 20 31 32
-56 37 38 31 32
-57 38 6 39 7
-58 14 15 6 7
-59 14 15 30 31
-60 44 45 30 31
-61 44 1 12 45
-62 1 12 20 21
-63 25 36 20 21
-64 25 36 38 39
-65 11 12 39 40
-66 11 12 15 16
-67 35 36 15 16
-68 45 35 46 36
-69 45 46 5 6
-70 22 5 6 21
-71 22 29 30 21
-72 39 29 40 30
-73 4 5 40 41
-74 4 5 16 17
-75 16 17 28 29
-76 46 47 28 29
-77 11 46 47 10
-78 11 22 23 10
-79 22 23 34 35
-80 34 35 40 41
-81 41 9 42 10
-82 17 18 9 10
-83 33 34 17 18
-84 33 34 47 48
-85 3 47 4 48
-86 23 24 3 4
-87 23 24 27 28
-88 27 28 41 42
-89 2 3 42 43
-90 2 3 18 19
-91 26 27 18 19
-92 26 37 48 27
-93 37 48 8 9
-94 13 24 8 9
-95 33 13 24 32
-96 33 42 32 43
0

**************