C4graphGraph forms for C4 [ 96, 17 ] = PL(MSY(6,8,3,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 17 ] = PL(MSY(6,8,3,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {44, 61}, {33, 53}, {34, 54}, {42, 60}, {43, 61}, {33, 54}, {43, 60}, {34, 53}, {36, 60}, {41, 49}, {37, 60}, {42, 49}, {42, 54}, {43, 55}, {42, 55}, {37, 59}, {36, 59}, {41, 54}, {26, 58}, {27, 59}, {18, 51}, {26, 59}, {27, 58}, {17, 51}, {17, 52}, {18, 52}, {24, 63}, {23, 63}, {21, 57}, {25, 53}, {20, 57}, {25, 52}, {20, 58}, {26, 52}, {21, 58}, {26, 53}, {1, 49}, {2, 50}, {5, 55}, {12, 62}, {11, 57}, {10, 56}, {1, 50}, {12, 63}, {11, 56}, {10, 57}, {4, 55}, {2, 49}, {11, 63}, {8, 61}, {11, 62}, {8, 62}, {10, 50}, {7, 62}, {10, 51}, {7, 61}, {9, 51}, {9, 50}, {4, 56}, {5, 56}, {3, 67}, {17, 81}, {2, 67}, {17, 82}, {20, 87}, {14, 74}, {19, 87}, {14, 75}, {2, 68}, {38, 96}, {16, 86}, {13, 75}, {25, 95}, {31, 89}, {3, 68}, {39, 96}, {16, 87}, {13, 74}, {8, 79}, {25, 94}, {31, 88}, {12, 68}, {22, 94}, {13, 69}, {12, 69}, {41, 96}, {23, 94}, {13, 68}, {24, 81}, {23, 93}, {24, 82}, {19, 88}, {22, 93}, {5, 73}, {20, 88}, {16, 92}, {6, 74}, {30, 82}, {31, 83}, {16, 93}, {30, 83}, {31, 82}, {1, 79}, {5, 74}, {6, 73}, {29, 77}, {48, 96}, {1, 80}, {4, 85}, {29, 76}, {4, 86}, {30, 76}, {30, 77}, {9, 93}, {18, 70}, {3, 86}, {19, 70}, {9, 92}, {3, 85}, {19, 69}, {18, 69}, {23, 64}, {8, 80}, {15, 87}, {24, 64}, {15, 86}, {21, 76}, {6, 92}, {22, 76}, {27, 65}, {28, 70}, {29, 71}, {7, 92}, {27, 64}, {28, 71}, {29, 70}, {7, 91}, {28, 64}, {6, 91}, {22, 75}, {28, 65}, {14, 80}, {21, 75}, {15, 81}, {14, 81}, {15, 80}, {46, 78}, {47, 79}, {46, 79}, {45, 78}, {35, 71}, {45, 73}, {44, 72}, {34, 71}, {48, 85}, {45, 72}, {39, 66}, {39, 65}, {46, 73}, {37, 77}, {38, 78}, {40, 65}, {43, 66}, {34, 72}, {48, 90}, {40, 66}, {35, 72}, {48, 91}, {38, 77}, {37, 78}, {44, 66}, {45, 67}, {44, 67}, {33, 83}, {41, 91}, {33, 84}, {47, 90}, {32, 88}, {39, 95}, {32, 89}, {38, 95}, {35, 90}, {35, 89}, {47, 85}, {46, 84}, {40, 83}, {47, 84}, {40, 84}, {36, 89}, {32, 94}, {36, 90}, {32, 95} }>;

(II) A more general form is to represent the graph as the orbit of {44, 61} under the group generated by the following permutations:

a: (2, 8)(3, 7)(4, 6)(9, 15)(10, 14)(11, 13)(18, 24)(19, 23)(20, 22)(25, 31)(26, 30)(27, 29)(34, 40)(35, 39)(36, 38)(41, 47)(42, 46)(43, 45)(49, 79)(50, 80)(51, 81)(52, 82)(53, 83)(54, 84)(55, 73)(56, 74)(57, 75)(58, 76)(59, 77)(60, 78)(61, 67)(62, 68)(63, 69)(64, 70)(65, 71)(66, 72)(85, 91)(86, 92)(87, 93)(88, 94)(89, 95)(90, 96)
b: (1, 2, 3, 4, 5, 6, 7, 8)(9, 12, 15, 10, 13, 16, 11, 14)(17, 18, 19, 20, 21, 22, 23, 24)(25, 28, 31, 26, 29, 32, 27, 30)(33, 34, 35, 36, 37, 38, 39, 40)(41, 44, 47, 42, 45, 48, 43, 46)(49, 67, 85, 55, 73, 91, 61, 79)(50, 68, 86, 56, 74, 92, 62, 80)(51, 69, 87, 57, 75, 93, 63, 81)(52, 70, 88, 58, 76, 94, 64, 82)(53, 71, 89, 59, 77, 95, 65, 83)(54, 72, 90, 60, 78, 96, 66, 84)
c: (1, 9, 23, 27, 37, 45, 3, 15, 17, 25, 39, 43, 5, 13, 19, 31, 33, 41, 7, 11, 21, 29, 35, 47)(2, 16, 24, 26, 38, 44, 4, 14, 18, 32, 40, 42, 6, 12, 20, 30, 34, 48, 8, 10, 22, 28, 36, 46)(49, 92, 63, 58, 77, 72, 85, 80, 51, 94, 65, 60, 73, 68, 87, 82, 53, 96, 61, 56, 75, 70, 89, 84)(50, 93, 64, 59, 78, 67, 86, 81, 52, 95, 66, 55, 74, 69, 88, 83, 54, 91, 62, 57, 76, 71, 90, 79)
d: (9, 41)(10, 42)(11, 43)(12, 44)(13, 45)(14, 46)(15, 47)(16, 48)(17, 33)(18, 34)(19, 35)(20, 36)(21, 37)(22, 38)(23, 39)(24, 40)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61, 62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 17 ]
96
-1 79 80 49 50
-2 67 68 49 50
-3 67 68 85 86
-4 55 56 85 86
-5 55 56 73 74
-6 91 92 73 74
-7 91 92 61 62
-8 79 80 61 62
-9 92 93 50 51
-10 56 57 50 51
-11 56 57 62 63
-12 68 69 62 63
-13 68 69 74 75
-14 80 81 74 75
-15 80 81 86 87
-16 92 93 86 87
-17 81 82 51 52
-18 69 70 51 52
-19 88 69 70 87
-20 88 57 58 87
-21 57 58 75 76
-22 93 94 75 76
-23 93 94 63 64
-24 81 82 63 64
-25 94 95 52 53
-26 58 59 52 53
-27 58 59 64 65
-28 70 71 64 65
-29 77 70 71 76
-30 77 82 83 76
-31 88 89 82 83
-32 88 89 94 95
-33 83 84 53 54
-34 71 72 53 54
-35 89 90 71 72
-36 89 90 59 60
-37 77 78 59 60
-38 77 78 95 96
-39 66 95 96 65
-40 66 83 84 65
-41 91 49 96 54
-42 55 49 60 54
-43 55 66 60 61
-44 66 67 61 72
-45 67 78 72 73
-46 78 79 73 84
-47 79 90 84 85
-48 90 91 85 96
-49 1 2 41 42
-50 1 2 9 10
-51 17 18 9 10
-52 25 26 17 18
-53 33 34 25 26
-54 33 34 41 42
-55 4 5 42 43
-56 11 4 5 10
-57 11 20 10 21
-58 26 27 20 21
-59 36 26 37 27
-60 36 37 42 43
-61 44 7 8 43
-62 11 12 7 8
-63 11 12 23 24
-64 23 24 27 28
-65 27 28 39 40
-66 44 39 40 43
-67 44 45 2 3
-68 12 2 13 3
-69 12 13 18 19
-70 28 18 29 19
-71 34 35 28 29
-72 44 34 45 35
-73 45 46 5 6
-74 13 14 5 6
-75 22 13 14 21
-76 22 29 30 21
-77 37 38 29 30
-78 45 46 37 38
-79 1 46 47 8
-80 1 14 15 8
-81 24 14 15 17
-82 24 17 30 31
-83 33 40 30 31
-84 33 46 47 40
-85 3 47 4 48
-86 3 4 15 16
-87 15 16 19 20
-88 19 20 31 32
-89 35 36 31 32
-90 35 36 47 48
-91 48 6 7 41
-92 16 6 7 9
-93 22 23 16 9
-94 22 23 25 32
-95 25 38 39 32
-96 48 38 39 41
0

**************