C4graphGraph forms for C4 [ 96, 18 ] = MSY(4,24,13,4)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 18 ] = MSY(4,24,13,4).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {2, 3}, {94, 95}, {90, 91}, {86, 87}, {82, 83}, {78, 79}, {74, 75}, {38, 39}, {34, 35}, {30, 31}, {26, 27}, {6, 7}, {10, 11}, {14, 15}, {18, 19}, {22, 23}, {42, 43}, {46, 47}, {50, 51}, {54, 55}, {58, 59}, {62, 63}, {66, 67}, {70, 71}, {1, 2}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {37, 38}, {33, 34}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {2, 6}, {90, 94}, {88, 92}, {82, 86}, {80, 84}, {74, 78}, {72, 76}, {34, 38}, {32, 36}, {26, 30}, {24, 28}, {8, 12}, {10, 14}, {16, 20}, {18, 22}, {40, 44}, {42, 46}, {48, 52}, {50, 54}, {56, 60}, {58, 62}, {64, 68}, {66, 70}, {3, 4}, {91, 92}, {83, 84}, {75, 76}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60}, {67, 68}, {4, 8}, {86, 90}, {84, 88}, {38, 42}, {36, 40}, {6, 10}, {20, 24}, {22, 26}, {52, 56}, {54, 58}, {68, 72}, {70, 74}, {16, 29}, {80, 93}, {32, 45}, {48, 61}, {64, 77}, {7, 8}, {87, 88}, {23, 24}, {39, 40}, {55, 56}, {71, 72}, {4, 17}, {76, 89}, {36, 49}, {12, 25}, {44, 57}, {68, 81}, {12, 16}, {78, 82}, {76, 80}, {14, 18}, {44, 48}, {46, 50}, {8, 21}, {72, 85}, {40, 53}, {15, 16}, {79, 80}, {47, 48}, {1, 45}, {3, 47}, {17, 61}, {19, 63}, {1, 53}, {3, 55}, {5, 49}, {7, 51}, {9, 61}, {11, 63}, {13, 57}, {15, 59}, {20, 33}, {28, 41}, {5, 57}, {92, 96}, {30, 34}, {28, 32}, {7, 59}, {9, 53}, {11, 55}, {24, 37}, {31, 32}, {95, 96}, {13, 65}, {31, 83}, {29, 81}, {15, 67}, {17, 69}, {31, 75}, {29, 73}, {27, 79}, {25, 77}, {19, 71}, {21, 65}, {23, 67}, {1, 84}, {9, 92}, {2, 94}, {27, 71}, {25, 69}, {21, 73}, {23, 75}, {5, 88}, {4, 96}, {33, 77}, {35, 79}, {49, 93}, {51, 95}, {13, 96}, {33, 85}, {37, 81}, {35, 87}, {39, 83}, {41, 93}, {43, 95}, {45, 89}, {47, 91}, {52, 65}, {60, 73}, {37, 89}, {39, 91}, {41, 85}, {43, 87}, {60, 64}, {62, 66}, {56, 69}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (3, 6)(4, 7)(5, 47)(9, 54)(10, 55)(13, 52)(14, 56)(15, 69)(16, 25)(17, 59)(18, 60)(19, 64)(20, 77)(22, 73)(23, 74)(24, 78)(26, 29)(27, 81)(28, 82)(32, 83)(35, 38)(36, 39)(37, 79)(41, 86)(42, 87)(45, 84)(46, 88)(48, 57)(49, 91)(50, 92)(51, 96)(58, 61)(67, 70)(68, 71)(80, 89)(90, 93)
b: (1, 2)(3, 45)(4, 32)(5, 88)(6, 84)(7, 83)(8, 31)(9, 93)(10, 80)(11, 76)(12, 75)(13, 35)(14, 79)(15, 78)(16, 74)(17, 28)(18, 27)(19, 71)(20, 70)(21, 30)(22, 26)(23, 25)(24, 69)(29, 73)(33, 66)(34, 65)(36, 96)(37, 56)(38, 52)(39, 51)(40, 95)(41, 61)(42, 48)(43, 44)(46, 47)(49, 92)(50, 91)(53, 94)(54, 90)(55, 89)(57, 87)(58, 86)(59, 82)(60, 81)(62, 85)(63, 72)(64, 68)(67, 77)
c: (2, 53)(3, 9)(4, 61)(5, 50)(6, 54)(7, 58)(8, 62)(10, 55)(12, 63)(13, 52)(14, 56)(15, 60)(16, 64)(18, 69)(19, 25)(20, 77)(21, 66)(22, 70)(23, 74)(24, 78)(26, 71)(28, 79)(29, 68)(30, 72)(31, 76)(32, 80)(34, 85)(35, 41)(36, 93)(37, 82)(38, 86)(39, 90)(40, 94)(42, 87)(44, 95)(45, 84)(46, 88)(47, 92)(48, 96)(51, 57)(67, 73)(83, 89)
d: (2, 84, 53, 45)(3, 80, 9, 32)(4, 79, 61, 28)(5, 39, 50, 90)(6, 83, 54, 89)(7, 82, 58, 37)(8, 78, 62, 24)(10, 31, 55, 76)(11, 75)(12, 74, 63, 23)(13, 34, 52, 85)(14, 30, 56, 72)(15, 29, 60, 68)(16, 73, 64, 67)(17, 27)(18, 26, 69, 71)(19, 22, 25, 70)(20, 21, 77, 66)(33, 65)(35, 48, 41, 96)(36, 47, 93, 92)(38, 51, 86, 57)(40, 46, 94, 88)(42, 95, 87, 44)(49, 91)(59, 81)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 18 ]
96
-1 45 2 84 53
-2 1 3 6 94
-3 55 2 47 4
-4 3 17 8 96
-5 88 57 49 6
-6 2 5 7 10
-7 59 6 51 8
-8 12 4 7 21
-9 92 61 53 10
-10 11 14 6 9
-11 55 12 63 10
-12 11 25 16 8
-13 57 14 96 65
-14 13 15 18 10
-15 67 14 59 16
-16 12 15 29 20
-17 69 4 61 18
-18 22 14 17 19
-19 71 18 63 20
-20 33 24 16 19
-21 22 73 8 65
-22 23 26 18 21
-23 22 67 24 75
-24 23 37 28 20
-25 77 12 69 26
-26 22 25 27 30
-27 79 26 71 28
-28 24 27 41 32
-29 81 16 73 30
-30 34 26 29 31
-31 83 30 75 32
-32 45 36 28 31
-33 77 34 85 20
-34 33 35 38 30
-35 34 79 36 87
-36 35 49 40 32
-37 89 24 81 38
-38 34 37 39 42
-39 91 38 83 40
-40 44 36 39 53
-41 93 28 85 42
-42 46 38 41 43
-43 44 95 42 87
-44 57 48 40 43
-45 1 89 46 32
-46 45 47 50 42
-47 46 3 91 48
-48 44 47 61 52
-49 36 5 93 50
-50 46 49 51 54
-51 50 7 95 52
-52 56 48 51 65
-53 1 40 9 54
-54 55 58 50 53
-55 11 56 3 54
-56 55 69 60 52
-57 44 13 58 5
-58 57 59 62 54
-59 58 15 60 7
-60 56 59 73 64
-61 48 17 62 9
-62 66 58 61 63
-63 11 62 19 64
-64 77 68 60 63
-65 66 13 52 21
-66 67 70 62 65
-67 66 23 68 15
-68 67 81 72 64
-69 56 25 70 17
-70 66 69 71 74
-71 70 27 72 19
-72 68 71 85 76
-73 60 29 74 21
-74 78 70 73 75
-75 23 74 31 76
-76 89 80 72 75
-77 33 78 25 64
-78 77 79 82 74
-79 78 35 80 27
-80 79 93 84 76
-81 68 37 82 29
-82 78 81 83 86
-83 82 39 84 31
-84 88 1 80 83
-85 33 72 41 86
-86 90 82 85 87
-87 88 35 86 43
-88 92 5 84 87
-89 45 90 37 76
-90 89 91 94 86
-91 90 47 92 39
-92 88 91 96 9
-93 80 49 94 41
-94 2 90 93 95
-95 94 51 96 43
-96 13 4 92 95
0

**************