[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 19 ] =
PL(MC3(6,8,1,5,3,0,1),[4^12,6^8]).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {48, 50}, {48, 53}, {33, 49}, {44, 60}, {39, 54}, {46, 63}, {42,
57}, {44, 56}, {38, 51}, {45, 59}, {47, 57}, {32, 55}, {41, 62}, {37, 60}, {43,
50}, {34, 56}, {39, 61}, {33, 58}, {47, 52}, {37, 56}, {38, 59}, {32, 62}, {45,
51}, {43, 53}, {42, 52}, {41, 55}, {34, 61}, {25, 56}, {30, 61}, {25, 61}, {27,
63}, {16, 53}, {17, 55}, {22, 49}, {30, 54}, {24, 49}, {16, 58}, {24, 50}, {22,
58}, {3, 51}, {6, 52}, {9, 59}, {8, 58}, {2, 54}, {10, 62}, {1, 54}, {4, 51},
{7, 62}, {14, 55}, {3, 57}, {5, 63}, {1, 60}, {15, 50}, {9, 52}, {8, 53}, {6,
59}, {4, 57}, {1, 63}, {15, 49}, {2, 60}, {18, 82}, {8, 73}, {18, 83}, {23, 86},
{29, 92}, {31, 94}, {7, 69}, {11, 73}, {13, 78}, {18, 81}, {14, 77}, {26, 89},
{28, 95}, {11, 79}, {12, 72}, {13, 72}, {30, 91}, {31, 90}, {18, 84}, {38, 96},
{28, 90}, {7, 64}, {17, 86}, {8, 79}, {23, 80}, {22, 94}, {29, 85}, {14, 71},
{16, 89}, {1, 75}, {17, 91}, {10, 64}, {21, 95}, {3, 72}, {7, 76}, {23, 92},
{30, 85}, {6, 74}, {3, 78}, {20, 89}, {14, 67}, {21, 88}, {5, 75}, {22, 88},
{29, 82}, {21, 69}, {12, 93}, {17, 67}, {20, 70}, {19, 65}, {29, 79}, {2, 81},
{9, 90}, {31, 76}, {6, 80}, {19, 69}, {13, 91}, {11, 93}, {10, 92}, {9, 94},
{26, 77}, {13, 85}, {21, 77}, {31, 71}, {24, 65}, {27, 66}, {27, 65}, {28, 70},
{4, 95}, {15, 84}, {5, 94}, {25, 66}, {4, 88}, {12, 80}, {11, 87}, {24, 68}, {5,
88}, {15, 82}, {12, 81}, {23, 74}, {26, 71}, {26, 68}, {28, 66}, {2, 93}, {20,
75}, {19, 76}, {10, 85}, {25, 70}, {27, 68}, {44, 76}, {39, 69}, {45, 79}, {41,
75}, {47, 73}, {38, 65}, {40, 64}, {33, 72}, {35, 73}, {39, 77}, {36, 78}, {40,
67}, {44, 71}, {46, 66}, {46, 67}, {36, 74}, {46, 64}, {42, 68}, {41, 70}, {16,
96}, {33, 80}, {43, 90}, {34, 83}, {19, 96}, {42, 89}, {37, 86}, {36, 87}, {20,
96}, {43, 95}, {34, 87}, {35, 86}, {32, 87}, {36, 83}, {35, 84}, {35, 91}, {37,
92}, {40, 81}, {48, 74}, {40, 83}, {47, 84}, {32, 93}, {48, 78}, {45, 82}
}>;
(II) A more general form is to represent the graph as the orbit of {48, 50}
under the group generated by the following permutations:
a: (7, 14)(10, 17)(19, 26)(29, 35)(38, 42)(45, 47)(51, 57)(52, 59)(55, 62)(64,
67)(65, 68)(69, 77)(71, 76)(73, 79)(82, 84)(85, 91)(86, 92)(89, 96) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 3)(2, 13)(4, 5)(6, 25)(7, 15)(8, 14)(9, 28)(10, 18)(11, 17)(12, 30)(16,
26)(19, 24)(20, 42)(21, 22)(23, 34)(27, 38)(29, 40)(31, 43)(32, 35)(33, 39)(36,
37)(41, 47)(44, 48)(45, 46)(49, 69)(50, 76)(51, 63)(52, 70)(53, 71)(54, 72)(55,
73)(56, 74)(57, 75)(58, 77)(59, 66)(60, 78)(61, 80)(62, 84)(64, 82)(67, 79)(68,
96)(81, 85)(83, 92)(86, 87)(91, 93)(94, 95)
c: (3, 6)(4, 9)(7, 14)(10, 17)(13, 23)(19, 26)(21, 31)(29, 35)(30, 37)(38,
42)(39, 44)(45, 47)(51, 52)(54, 60)(55, 62)(56, 61)(57, 59)(64, 67)(65, 68)(69,
71)(72, 80)(73, 79)(74, 78)(76, 77)(82, 84)(85, 86)(88, 94)(89, 96)(90, 95)(91,
92)
d: (2, 5)(3, 8, 6, 15)(4, 11, 9, 18)(7, 14)(10, 26)(12, 22)(13, 16, 23, 24)(17,
19)(20, 37, 27, 30)(21, 32, 31, 40)(28, 34)(29, 42)(35, 38)(36, 43)(39, 41, 44,
46)(45, 47)(49, 72, 58, 80)(50, 78, 53, 74)(51, 73, 59, 84)(52, 82, 57, 79)(54,
75, 60, 63)(55, 76, 67, 69)(56, 66, 61, 70)(62, 71, 64, 77)(65, 91, 96, 86)(68,
85, 89, 92)(81, 88, 93, 94)(83, 95, 87, 90)
e: (1, 2)(3, 4)(5, 12)(6, 9)(7, 10)(8, 16)(11, 20)(13, 21)(14, 17)(15, 24)(18,
27)(19, 29)(22, 33)(23, 31)(25, 34)(26, 35)(28, 36)(30, 39)(32, 41)(37, 44)(38,
45)(40, 46)(42, 47)(43, 48)(63, 81)(65, 82)(66, 83)(68, 84)(69, 85)(70, 87)(71,
86)(72, 88)(73, 89)(74, 90)(75, 93)(76, 92)(77, 91)(78, 95)(79, 96)(80, 94)
C4[ 96, 19 ]
96
-1 60 63 75 54
-2 81 60 93 54
-3 78 57 72 51
-4 88 57 51 95
-5 88 94 63 75
-6 80 59 52 74
-7 69 62 64 76
-8 79 58 73 53
-9 90 59 94 52
-10 92 62 85 64
-11 79 93 73 87
-12 80 81 93 72
-13 78 91 72 85
-14 55 77 67 71
-15 49 82 50 84
-16 89 58 96 53
-17 55 67 91 86
-18 81 82 83 84
-19 69 96 65 76
-20 89 70 96 75
-21 77 88 69 95
-22 88 58 49 94
-23 80 92 74 86
-24 68 49 50 65
-25 66 56 70 61
-26 77 89 68 71
-27 66 68 63 65
-28 66 90 70 95
-29 79 92 82 85
-30 91 61 85 54
-31 90 71 94 76
-32 55 93 62 87
-33 58 80 49 72
-34 56 61 83 87
-35 91 73 84 86
-36 78 83 74 87
-37 56 92 60 86
-38 59 51 96 65
-39 77 69 61 54
-40 67 81 83 64
-41 55 70 62 75
-42 89 57 68 52
-43 90 50 95 53
-44 56 60 71 76
-45 79 59 82 51
-46 66 67 63 64
-47 57 73 84 52
-48 78 50 74 53
-49 22 33 24 15
-50 24 15 48 43
-51 45 3 4 38
-52 47 6 9 42
-53 48 16 8 43
-54 1 2 39 30
-55 14 17 41 32
-56 44 34 25 37
-57 3 47 4 42
-58 22 33 16 8
-59 45 38 6 9
-60 44 1 2 37
-61 34 25 39 30
-62 7 41 10 32
-63 1 46 5 27
-64 46 7 40 10
-65 24 27 38 19
-66 46 25 27 28
-67 46 14 17 40
-68 24 26 27 42
-69 39 7 19 21
-70 25 28 41 20
-71 44 14 26 31
-72 33 12 13 3
-73 11 35 47 8
-74 23 36 48 6
-75 1 5 41 20
-76 44 7 19 31
-77 14 26 39 21
-78 13 3 36 48
-79 11 45 29 8
-80 33 12 23 6
-81 12 2 18 40
-82 45 15 18 29
-83 34 36 18 40
-84 35 47 15 18
-85 13 29 30 10
-86 23 35 37 17
-87 11 34 36 32
-88 22 4 5 21
-89 26 16 20 42
-90 28 9 31 43
-91 13 35 17 30
-92 23 37 29 10
-93 11 12 2 32
-94 22 5 9 31
-95 4 28 21 43
-96 16 38 19 20
0