[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 20 ] =
PL(MC3(6,8,1,5,3,4,1),[4^12,12^4]).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {48, 51}, {48, 59}, {35, 50}, {46, 63}, {38, 55}, {42, 56}, {39,
51}, {45, 57}, {42, 62}, {41, 61}, {44, 58}, {47, 57}, {33, 54}, {43, 60}, {35,
52}, {45, 53}, {34, 56}, {47, 53}, {40, 50}, {38, 60}, {33, 61}, {43, 55}, {40,
52}, {39, 59}, {34, 62}, {44, 49}, {41, 54}, {18, 50}, {18, 49}, {28, 63}, {30,
61}, {23, 49}, {19, 52}, {26, 61}, {16, 56}, {19, 58}, {30, 55}, {23, 58}, {26,
55}, {3, 51}, {7, 53}, {6, 53}, {9, 58}, {2, 54}, {10, 62}, {8, 62}, {14, 56},
{1, 54}, {4, 51}, {3, 57}, {5, 63}, {7, 59}, {1, 60}, {15, 50}, {9, 52}, {6,
59}, {4, 57}, {1, 63}, {15, 49}, {2, 60}, {17, 81}, {11, 74}, {25, 88}, {12,
78}, {17, 83}, {14, 76}, {27, 89}, {29, 95}, {9, 74}, {17, 82}, {13, 78}, {30,
93}, {11, 79}, {24, 92}, {31, 91}, {8, 77}, {17, 84}, {16, 85}, {13, 72}, {12,
73}, {9, 79}, {25, 95}, {29, 90}, {39, 96}, {8, 64}, {22, 94}, {14, 70}, {24,
80}, {23, 94}, {31, 86}, {1, 75}, {10, 64}, {3, 72}, {18, 89}, {31, 84}, {16,
92}, {22, 90}, {21, 89}, {3, 78}, {14, 67}, {8, 69}, {5, 75}, {24, 86}, {6, 73},
{23, 88}, {30, 81}, {22, 70}, {2, 83}, {20, 69}, {10, 91}, {24, 73}, {19, 65},
{21, 71}, {16, 67}, {2, 87}, {20, 65}, {25, 76}, {31, 74}, {6, 80}, {13, 91},
{11, 93}, {19, 68}, {27, 76}, {7, 95}, {13, 85}, {26, 66}, {28, 68}, {20, 77},
{4, 94}, {29, 71}, {5, 94}, {22, 77}, {15, 84}, {12, 87}, {10, 86}, {11, 87},
{25, 69}, {5, 88}, {15, 82}, {26, 71}, {27, 70}, {28, 65}, {4, 90}, {21, 75},
{28, 66}, {7, 88}, {12, 83}, {27, 68}, {29, 66}, {42, 75}, {48, 82}, {44, 72},
{37, 64}, {47, 74}, {41, 76}, {37, 67}, {43, 77}, {39, 65}, {32, 72}, {45, 68},
{35, 73}, {36, 79}, {41, 69}, {46, 66}, {35, 78}, {46, 67}, {43, 70}, {42, 71},
{46, 64}, {32, 80}, {38, 86}, {32, 81}, {36, 85}, {18, 96}, {40, 90}, {20, 96},
{45, 89}, {37, 81}, {33, 85}, {21, 96}, {34, 87}, {36, 82}, {37, 83}, {40, 95},
{36, 92}, {33, 91}, {38, 92}, {47, 84}, {44, 80}, {32, 93}, {34, 93}, {48, 79}
}>;
(II) A more general form is to represent the graph as the orbit of {48, 51}
under the group generated by the following permutations:
a: (3, 6)(4, 7)(8, 14)(10, 16)(13, 24)(20, 27)(22, 25)(31, 36)(33, 38)(39,
45)(41, 43)(47, 48)(51, 53)(54, 60)(55, 61)(56, 62)(57, 59)(64, 67)(65, 68)(69,
70)(72, 80)(73, 78)(74, 79)(76, 77)(82, 84)(85, 86)(88, 94)(89, 96)(90, 95)(91,
92) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (9, 15)(11, 17)(18, 19)(21, 28)(34, 37)(42, 46)(49, 58)(50, 52)(56, 67)(62,
64)(63, 75)(65, 96)(66, 71)(68, 89)(74, 84)(79, 82)(81, 93)(83, 87)
c: (8, 14)(10, 16)(20, 27)(31, 36)(39, 45)(47, 48)(51, 57)(53, 59)(56, 62)(64,
67)(65, 68)(69, 76)(70, 77)(74, 79)(82, 84)(85, 91)(86, 92)(89, 96)
d: (2, 5)(3, 9)(4, 11)(6, 15)(7, 17)(10, 20)(12, 23)(13, 19)(16, 27)(18, 24)(21,
38)(22, 34)(25, 37)(28, 33)(29, 30)(31, 39)(32, 40)(35, 44)(36, 45)(41, 46)(42,
43)(47, 48)(49, 73)(50, 80)(51, 74)(52, 72)(53, 82)(54, 63)(55, 71)(56, 70)(57,
79)(58, 78)(59, 84)(60, 75)(61, 66)(62, 77)(64, 69)(65, 91)(67, 76)(68, 85)(81,
95)(83, 88)(86, 96)(87, 94)(89, 92)(90, 93)
e: (1, 3)(2, 13)(4, 5)(6, 26)(7, 29)(8, 9)(10, 11)(12, 33)(14, 15)(16, 17)(18,
27)(19, 20)(21, 45)(22, 23)(24, 30)(25, 40)(28, 39)(31, 34)(32, 38)(35, 41)(36,
37)(42, 47)(43, 44)(46, 48)(49, 70)(50, 76)(51, 63)(52, 69)(53, 71)(54, 78)(55,
80)(56, 84)(57, 75)(58, 77)(59, 66)(60, 72)(61, 73)(62, 74)(64, 79)(67, 82)(68,
96)(81, 92)(83, 85)(86, 93)(87, 91)(88, 90)
f: (1, 2)(3, 4)(5, 12)(6, 7)(8, 16)(9, 18)(10, 14)(11, 21)(13, 22)(15, 19)(17,
28)(20, 36)(23, 35)(24, 25)(26, 30)(27, 31)(29, 32)(33, 43)(34, 42)(37, 46)(38,
41)(39, 48)(40, 44)(45, 47)(49, 52)(50, 58)(54, 60)(55, 61)(56, 62)(63, 83)(64,
67)(65, 82)(66, 81)(68, 84)(69, 92)(70, 91)(71, 93)(72, 90)(73, 88)(74, 89)(75,
87)(76, 86)(77, 85)(78, 94)(79, 96)(80, 95)
C4[ 96, 20 ]
96
-1 60 63 75 54
-2 60 83 54 87
-3 78 57 72 51
-4 57 90 94 51
-5 88 94 63 75
-6 80 59 73 53
-7 88 59 95 53
-8 77 69 62 64
-9 79 58 52 74
-10 91 62 64 86
-11 79 93 74 87
-12 78 83 73 87
-13 78 91 72 85
-14 56 67 70 76
-15 49 82 50 84
-16 56 67 92 85
-17 81 82 83 84
-18 89 49 50 96
-19 68 58 52 65
-20 77 69 96 65
-21 89 71 96 75
-22 77 90 70 94
-23 88 58 49 94
-24 80 92 73 86
-25 88 69 95 76
-26 55 66 71 61
-27 89 68 70 76
-28 66 68 63 65
-29 66 90 71 95
-30 55 81 93 61
-31 91 84 74 86
-32 80 81 93 72
-33 91 61 85 54
-34 56 93 62 87
-35 78 50 73 52
-36 79 92 82 85
-37 67 81 83 64
-38 55 92 60 86
-39 59 51 96 65
-40 90 50 95 52
-41 69 61 54 76
-42 56 71 62 75
-43 55 77 70 60
-44 58 80 49 72
-45 89 57 68 53
-46 66 67 63 64
-47 57 84 74 53
-48 79 59 82 51
-49 44 23 15 18
-50 35 15 18 40
-51 3 4 48 39
-52 35 40 19 9
-53 45 47 6 7
-54 33 1 2 41
-55 26 38 30 43
-56 34 14 16 42
-57 45 3 47 4
-58 44 23 19 9
-59 48 6 39 7
-60 1 2 38 43
-61 33 26 30 41
-62 34 8 42 10
-63 1 46 5 28
-64 46 37 8 10
-65 28 39 19 20
-66 46 26 28 29
-67 46 14 37 16
-68 45 27 28 19
-69 25 8 41 20
-70 22 14 27 43
-71 26 29 42 21
-72 44 13 3 32
-73 12 24 35 6
-74 11 47 9 31
-75 1 5 42 21
-76 14 25 27 41
-77 22 8 20 43
-78 12 13 35 3
-79 11 36 48 9
-80 44 24 6 32
-81 37 17 30 32
-82 36 15 48 17
-83 12 2 37 17
-84 47 15 17 31
-85 33 13 36 16
-86 24 38 31 10
-87 11 12 34 2
-88 23 25 5 7
-89 45 27 18 21
-90 22 4 29 40
-91 33 13 31 10
-92 24 36 16 38
-93 11 34 30 32
-94 22 23 4 5
-95 25 7 29 40
-96 39 18 20 21
0