[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 21 ] =
PL(KE_12(3,1,6,11,3),[4^12,24^2]).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {48, 50}, {36, 52}, {42, 57}, {45, 62}, {33, 53}, {38, 50}, {34,
52}, {32, 58}, {40, 50}, {45, 54}, {39, 59}, {47, 51}, {37, 56}, {40, 54}, {44,
50}, {32, 63}, {44, 51}, {37, 58}, {23, 53}, {26, 56}, {28, 56}, {31, 59}, {19,
54}, {27, 62}, {21, 51}, {23, 49}, {22, 49}, {30, 57}, {29, 53}, {22, 63}, {28,
53}, {16, 58}, {30, 52}, {22, 58}, {31, 51}, {25, 52}, {17, 63}, {19, 61}, {1,
49}, {6, 55}, {7, 54}, {5, 55}, {15, 61}, {4, 55}, {3, 55}, {12, 56}, {9, 61},
{13, 59}, {11, 60}, {14, 57}, {4, 60}, {9, 49}, {6, 63}, {7, 61}, {5, 62}, {5,
57}, {7, 59}, {1, 60}, {3, 62}, {2, 60}, {17, 81}, {2, 67}, {18, 83}, {13, 76},
{8, 73}, {25, 88}, {1, 67}, {1, 66}, {16, 83}, {24, 91}, {28, 95}, {3, 71}, {5,
65}, {25, 93}, {36, 96}, {8, 77}, {18, 87}, {17, 87}, {18, 84}, {29, 91}, {38,
96}, {7, 64}, {15, 72}, {14, 73}, {9, 78}, {27, 92}, {28, 91}, {2, 74}, {24,
80}, {10, 67}, {31, 86}, {2, 72}, {16, 90}, {14, 68}, {10, 64}, {29, 87}, {30,
84}, {13, 70}, {8, 68}, {18, 94}, {13, 64}, {21, 88}, {3, 77}, {46, 96}, {29,
83}, {8, 71}, {14, 65}, {11, 68}, {26, 85}, {16, 64}, {21, 69}, {15, 94}, {20,
69}, {26, 75}, {12, 94}, {20, 70}, {31, 77}, {12, 95}, {22, 66}, {30, 74}, {17,
68}, {11, 93}, {19, 69}, {15, 89}, {25, 79}, {6, 81}, {9, 94}, {12, 84}, {21,
77}, {20, 76}, {19, 75}, {4, 93}, {23, 78}, {10, 83}, {6, 95}, {26, 67}, {24,
66}, {4, 95}, {23, 76}, {11, 87}, {27, 70}, {10, 85}, {24, 71}, {20, 75}, {38,
70}, {40, 73}, {47, 78}, {35, 65}, {48, 82}, {45, 79}, {43, 79}, {34, 71}, {35,
69}, {39, 65}, {40, 79}, {41, 78}, {32, 72}, {42, 66}, {34, 74}, {33, 72}, {48,
89}, {32, 74}, {48, 90}, {33, 76}, {37, 75}, {38, 73}, {35, 82}, {45, 92}, {39,
86}, {41, 90}, {47, 92}, {36, 81}, {44, 89}, {41, 92}, {39, 82}, {43, 93}, {33,
89}, {46, 86}, {34, 91}, {44, 85}, {42, 80}, {47, 85}, {27, 96}, {43, 80}, {41,
82}, {35, 88}, {36, 88}, {43, 86}, {42, 84}, {46, 80}, {37, 90}, {46, 81}
}>;
(II) A more general form is to represent the graph as the orbit of {48, 50}
under the group generated by the following permutations:
a: (1, 4)(2, 11)(3, 9)(5, 23)(6, 22)(7, 21)(8, 15)(10, 25)(12, 24)(13, 35)(14,
33)(16, 36)(17, 32)(18, 34)(19, 31)(20, 39)(26, 43)(27, 41)(28, 42)(29, 30)(37,
46)(38, 48)(40, 44)(45, 47)(49, 55)(51, 54)(52, 83)(53, 57)(56, 80)(58, 81)(59,
69)(61, 77)(62, 78)(64, 88)(65, 76)(66, 95)(67, 93)(68, 72)(70, 82)(71, 94)(73,
89)(74, 87)(75, 86)(79, 85)(84, 91)(90, 96) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 32, 22)(3, 8, 14, 5)(4, 34, 17, 42)(6, 24, 11, 30)(7, 19, 20, 13)(9,
26, 33, 16)(10, 15, 37, 23)(12, 28, 29, 18)(21, 38, 39, 45)(25, 36, 46, 43)(27,
31, 40, 35)(41, 47, 44, 48)(49, 67, 72, 58)(50, 82, 92, 51)(52, 81, 80, 93)(53,
83, 94, 56)(54, 69, 70, 59)(55, 71, 68, 57)(60, 74, 63, 66)(61, 75, 76, 64)(62,
77, 73, 65)(78, 85, 89, 90)(79, 88, 96, 86)(84, 95, 91, 87)
c: (1, 3, 20, 32, 14, 7)(2, 8, 13, 22, 5, 19)(4, 21, 33, 17, 39, 9)(6, 35, 15,
11, 31, 23)(10, 24, 27, 37, 30, 40)(12, 25, 44, 29, 46, 41)(16, 42, 45, 26, 34,
38)(18, 43, 47, 28, 36, 48)(49, 55, 69, 72, 68, 59)(50, 83, 80, 92, 56, 52)(51,
53, 81, 82, 94, 93)(54, 67, 71, 70, 58, 57)(60, 77, 76, 63, 65, 61)(62, 75, 74,
73, 64, 66)(78, 95, 88, 89, 87, 86)(79, 85, 91, 96, 90, 84)
d: (2, 22)(4, 24)(5, 8)(6, 34)(9, 10)(11, 42)(12, 29)(13, 19)(15, 16)(17,
30)(21, 27)(23, 26)(25, 46)(31, 45)(33, 37)(35, 38)(39, 40)(41, 44)(49, 67)(50,
82)(51, 92)(52, 81)(53, 56)(54, 59)(55, 71)(57, 68)(58, 72)(60, 66)(61, 64)(62,
77)(63, 74)(65, 73)(69, 70)(75, 76)(78, 85)(79, 86)(80, 93)(83, 94)(84, 87)(88,
96)(89, 90)(91, 95)
e: (3, 7)(4, 10)(5, 13)(6, 16)(8, 19)(9, 24)(11, 26)(12, 29)(14, 20)(15, 34)(17,
37)(18, 28)(21, 40)(23, 42)(25, 44)(27, 39)(30, 33)(31, 45)(35, 38)(36, 48)(41,
46)(43, 47)(49, 66)(50, 88)(51, 79)(52, 89)(53, 84)(54, 77)(55, 64)(56, 87)(57,
76)(58, 63)(59, 62)(60, 67)(61, 71)(65, 70)(68, 75)(69, 73)(72, 74)(78, 80)(81,
90)(82, 96)(83, 95)(85, 93)(86, 92)(91, 94)
C4[ 96, 21 ]
96
-1 66 67 49 60
-2 67 60 72 74
-3 55 77 71 62
-4 55 60 93 95
-5 55 57 62 65
-6 55 81 95 63
-7 59 61 64 54
-8 77 68 71 73
-9 78 49 61 94
-10 67 83 85 64
-11 68 60 93 87
-12 56 94 84 95
-13 59 70 64 76
-14 57 68 73 65
-15 89 61 72 94
-16 90 58 83 64
-17 68 81 63 87
-18 83 94 84 87
-19 69 61 75 54
-20 69 70 75 76
-21 77 88 69 51
-22 66 58 49 63
-23 78 49 53 76
-24 66 80 91 71
-25 88 79 93 52
-26 56 67 85 75
-27 70 92 62 96
-28 56 91 95 53
-29 91 83 53 87
-30 57 84 52 74
-31 77 59 51 86
-32 58 72 63 74
-33 89 72 53 76
-34 91 71 52 74
-35 88 69 82 65
-36 88 81 52 96
-37 56 90 58 75
-38 70 50 73 96
-39 59 82 86 65
-40 79 50 73 54
-41 78 90 92 82
-42 66 57 80 84
-43 79 80 93 86
-44 89 50 51 85
-45 79 92 62 54
-46 80 81 96 86
-47 78 92 51 85
-48 89 90 82 50
-49 22 1 23 9
-50 44 48 38 40
-51 44 47 31 21
-52 34 25 36 30
-53 33 23 28 29
-54 45 7 40 19
-55 3 4 5 6
-56 12 26 37 28
-57 14 5 30 42
-58 22 37 16 32
-59 13 39 7 31
-60 11 1 2 4
-61 15 7 19 9
-62 45 3 5 27
-63 22 6 17 32
-64 13 16 7 10
-65 35 14 5 39
-66 22 1 24 42
-67 1 2 26 10
-68 11 14 17 8
-69 35 19 20 21
-70 13 27 38 20
-71 34 24 3 8
-72 33 2 15 32
-73 14 38 40 8
-74 34 2 30 32
-75 26 37 19 20
-76 33 23 13 20
-77 3 8 31 21
-78 23 47 41 9
-79 45 25 40 43
-80 24 46 42 43
-81 46 36 6 17
-82 35 48 39 41
-83 16 18 29 10
-84 12 18 30 42
-85 44 47 26 10
-86 46 39 31 43
-87 11 17 18 29
-88 35 25 36 21
-89 33 44 15 48
-90 37 48 16 41
-91 34 24 28 29
-92 45 47 27 41
-93 11 25 4 43
-94 12 15 18 9
-95 12 4 6 28
-96 46 36 27 38
0