[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 22 ] =
KE_24(1,11,2,15,1).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {2, 3}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84,
85}, {82, 83}, {80, 81}, {22, 23}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {74, 75}, {76, 77}, {78, 79}, {48, 50},
{1, 2}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {21, 22}, {73, 74}, {77, 78}, {3, 4}, {91, 92}, {83, 84}, {11, 12}, {19,
20}, {75, 76}, {16, 29}, {18, 31}, {7, 8}, {87, 88}, {23, 24}, {17, 30}, {15,
28}, {12, 25}, {14, 27}, {13, 26}, {32, 56}, {37, 61}, {36, 60}, {35, 59}, {34,
58}, {33, 57}, {38, 62}, {39, 63}, {64, 88}, {65, 89}, {66, 90}, {67, 91}, {68,
92}, {69, 93}, {70, 94}, {71, 95}, {1, 24}, {32, 58}, {37, 63}, {36, 62}, {33,
59}, {34, 60}, {35, 61}, {47, 49}, {15, 16}, {79, 80}, {2, 39}, {8, 45}, {10,
47}, {30, 56}, {31, 57}, {1, 38}, {9, 46}, {25, 49}, {31, 55}, {30, 54}, {29,
53}, {28, 52}, {27, 51}, {26, 50}, {72, 96}, {73, 96}, {25, 51}, {29, 55}, {28,
54}, {3, 40}, {7, 44}, {4, 41}, {6, 43}, {26, 52}, {27, 53}, {5, 42}, {1, 49},
{2, 50}, {3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10,
58}, {11, 59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {19, 32}, {23, 36}, {20,
33}, {22, 35}, {21, 34}, {11, 48}, {24, 37}, {95, 96}, {25, 88}, {33, 96}, {31,
94}, {29, 92}, {27, 90}, {26, 89}, {30, 93}, {28, 91}, {16, 64}, {24, 72}, {23,
71}, {22, 70}, {21, 69}, {17, 65}, {18, 66}, {19, 67}, {20, 68}, {38, 64}, {39,
65}, {46, 72}, {40, 79}, {48, 87}, {40, 64}, {41, 65}, {42, 66}, {43, 67}, {44,
68}, {45, 69}, {46, 70}, {47, 71}, {56, 80}, {57, 81}, {58, 82}, {59, 83}, {60,
84}, {61, 85}, {62, 86}, {63, 87}, {35, 74}, {37, 76}, {39, 78}, {40, 66}, {41,
67}, {44, 70}, {45, 71}, {34, 73}, {38, 77}, {42, 68}, {43, 69}, {36, 75}, {48,
72}, {49, 73}, {50, 74}, {51, 75}, {52, 76}, {53, 77}, {54, 78}, {55, 79}, {41,
80}, {43, 82}, {45, 84}, {47, 86}, {42, 81}, {46, 85}, {32, 95}, {44, 83}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 24)(3, 23)(4, 22)(5, 21)(6, 20)(7, 19)(8, 18)(9, 17)(10, 16)(11, 15)(12,
14)(25, 62)(26, 61)(27, 60)(28, 59)(29, 58)(30, 57)(31, 56)(32, 55)(33, 54)(34,
53)(35, 52)(36, 51)(37, 50)(38, 49)(39, 72)(40, 71)(41, 70)(42, 69)(43, 68)(44,
67)(45, 66)(46, 65)(47, 64)(48, 63)(73, 77)(74, 76)(78, 96)(79, 95)(80, 94)(81,
93)(82, 92)(83, 91)(84, 90)(85, 89)(86, 88)
c: (2, 38)(3, 77)(4, 53)(6, 42)(7, 81)(8, 57)(10, 46)(11, 85)(12, 61)(14,
26)(15, 89)(16, 65)(18, 30)(19, 93)(20, 69)(22, 34)(23, 73)(24, 49)(25, 37)(27,
52)(28, 90)(29, 41)(31, 56)(32, 94)(33, 45)(35, 60)(36, 74)(39, 64)(40, 78)(43,
68)(44, 82)(47, 72)(48, 86)(50, 62)(51, 76)(54, 66)(55, 80)(58, 70)(59, 84)(63,
88)(67, 92)(71, 96)
C4[ 96, 22 ]
96
-1 2 24 38 49
-2 1 3 39 50
-3 2 4 40 51
-4 3 5 41 52
-5 4 6 42 53
-6 5 7 43 54
-7 44 55 6 8
-8 45 56 7 9
-9 46 57 8 10
-10 11 47 58 9
-11 12 48 59 10
-12 11 13 25 60
-13 12 14 26 61
-14 13 15 27 62
-15 14 16 28 63
-16 15 17 29 64
-17 16 18 30 65
-18 66 17 19 31
-19 67 18 20 32
-20 33 68 19 21
-21 22 34 69 20
-22 23 35 70 21
-23 22 24 36 71
-24 1 23 37 72
-25 88 12 49 51
-26 89 13 50 52
-27 90 14 51 53
-28 91 15 52 54
-29 55 92 16 53
-30 56 93 17 54
-31 55 57 94 18
-32 56 58 95 19
-33 57 59 96 20
-34 58 60 73 21
-35 22 59 61 74
-36 23 60 62 75
-37 24 61 63 76
-38 77 1 62 64
-39 78 2 63 65
-40 66 79 3 64
-41 67 80 4 65
-42 66 68 81 5
-43 67 69 82 6
-44 68 70 83 7
-45 69 71 84 8
-46 70 72 85 9
-47 49 71 86 10
-48 11 50 72 87
-49 1 25 47 73
-50 2 26 48 74
-51 3 25 27 75
-52 4 26 28 76
-53 77 5 27 29
-54 78 6 28 30
-55 79 7 29 31
-56 80 8 30 32
-57 33 81 9 31
-58 34 82 10 32
-59 11 33 35 83
-60 12 34 36 84
-61 13 35 37 85
-62 14 36 38 86
-63 15 37 39 87
-64 88 16 38 40
-65 89 17 39 41
-66 90 18 40 42
-67 91 19 41 43
-68 44 92 20 42
-69 45 93 21 43
-70 22 44 46 94
-71 23 45 47 95
-72 24 46 48 96
-73 34 49 74 96
-74 35 50 73 75
-75 36 51 74 76
-76 77 37 52 75
-77 78 38 53 76
-78 77 79 39 54
-79 55 78 80 40
-80 56 79 81 41
-81 57 80 82 42
-82 58 81 83 43
-83 44 59 82 84
-84 45 60 83 85
-85 46 61 84 86
-86 47 62 85 87
-87 88 48 63 86
-88 89 25 64 87
-89 88 90 26 65
-90 66 89 91 27
-91 67 90 92 28
-92 68 91 93 29
-93 69 92 94 30
-94 70 93 95 31
-95 71 94 96 32
-96 33 72 73 95
0