C4graphGraph forms for C4 [ 96, 23 ] = KE_24(1,13,10,21,1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 23 ] = KE_24(1,13,10,21,1).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {2, 3}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {22, 23}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {1, 2}, {93, 94}, {89, 90}, {85, 86}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {73, 74}, {77, 78}, {81, 82}, {3, 4}, {91, 92}, {83, 84}, {11, 12}, {19, 20}, {75, 76}, {48, 58}, {16, 27}, {20, 31}, {17, 28}, {19, 30}, {7, 8}, {87, 88}, {23, 24}, {18, 29}, {15, 26}, {39, 49}, {46, 56}, {47, 57}, {14, 25}, {32, 56}, {38, 62}, {37, 61}, {36, 60}, {35, 59}, {34, 58}, {33, 57}, {39, 63}, {64, 88}, {65, 89}, {66, 90}, {67, 91}, {68, 92}, {69, 93}, {70, 94}, {71, 95}, {1, 24}, {40, 50}, {41, 51}, {44, 54}, {45, 55}, {42, 52}, {43, 53}, {15, 16}, {79, 80}, {25, 59}, {29, 63}, {28, 62}, {4, 39}, {8, 43}, {12, 47}, {1, 36}, {3, 38}, {9, 44}, {11, 46}, {26, 60}, {27, 61}, {2, 37}, {10, 45}, {25, 49}, {31, 55}, {30, 54}, {29, 53}, {28, 52}, {27, 51}, {26, 50}, {72, 96}, {73, 96}, {5, 40}, {7, 42}, {6, 41}, {1, 49}, {2, 50}, {3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11, 59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {21, 32}, {23, 34}, {22, 33}, {24, 35}, {13, 48}, {95, 96}, {26, 95}, {25, 94}, {16, 64}, {24, 72}, {23, 71}, {22, 70}, {21, 69}, {20, 68}, {17, 65}, {18, 66}, {19, 67}, {31, 76}, {28, 73}, {30, 75}, {29, 74}, {30, 64}, {31, 65}, {32, 66}, {37, 71}, {36, 70}, {33, 67}, {34, 68}, {35, 69}, {40, 64}, {41, 65}, {42, 66}, {43, 67}, {44, 68}, {45, 69}, {46, 70}, {47, 71}, {56, 80}, {57, 81}, {58, 82}, {59, 83}, {60, 84}, {61, 85}, {62, 86}, {63, 87}, {32, 77}, {34, 79}, {48, 93}, {38, 72}, {33, 78}, {35, 80}, {39, 84}, {43, 88}, {47, 92}, {36, 81}, {38, 83}, {44, 89}, {46, 91}, {37, 82}, {45, 90}, {48, 72}, {49, 73}, {50, 74}, {51, 75}, {52, 76}, {53, 77}, {54, 78}, {55, 79}, {27, 96}, {40, 85}, {42, 87}, {41, 86} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 36, 49, 24)(3, 81, 39, 35)(4, 80)(5, 56, 52, 79)(6, 8, 42, 55)(9, 87, 45, 41)(10, 86)(11, 62, 58, 85)(12, 14, 48, 61)(15, 93, 27, 47)(16, 92)(17, 68, 64, 91)(18, 20, 30, 67)(21, 75, 33, 29)(22, 74)(23, 50, 70, 73)(25, 72, 37, 60)(26, 94, 96, 71)(28, 34, 40, 46)(31, 54, 43, 66)(32, 76, 78, 53)(38, 82, 84, 59)(44, 88, 90, 65)(51, 57, 63, 69)
b: (2, 49)(3, 73)(4, 74)(5, 29)(6, 18)(7, 19)(8, 67)(9, 91)(10, 92)(11, 47)(14, 61)(15, 85)(16, 86)(17, 41)(20, 55)(21, 79)(22, 80)(23, 35)(25, 37)(26, 84)(27, 62)(28, 51)(30, 42)(32, 78)(33, 56)(34, 69)(38, 96)(39, 50)(40, 63)(44, 90)(45, 68)(46, 57)(52, 75)(54, 66)(58, 93)(59, 71)(64, 87)(70, 81)(82, 94)(83, 95)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 23 ]
96
-1 2 24 36 49
-2 1 3 37 50
-3 2 4 38 51
-4 3 5 39 52
-5 4 6 40 53
-6 5 7 41 54
-7 55 6 8 42
-8 56 7 9 43
-9 44 57 8 10
-10 11 45 58 9
-11 12 46 59 10
-12 11 13 47 60
-13 12 14 48 61
-14 13 25 15 62
-15 14 26 16 63
-16 15 27 17 64
-17 16 28 18 65
-18 66 17 29 19
-19 67 18 30 20
-20 68 19 31 21
-21 22 69 20 32
-22 33 23 70 21
-23 22 34 24 71
-24 1 23 35 72
-25 14 59 49 94
-26 15 60 50 95
-27 16 61 51 96
-28 17 62 73 52
-29 18 63 74 53
-30 19 64 75 54
-31 55 20 65 76
-32 66 77 56 21
-33 22 67 78 57
-34 23 68 79 58
-35 24 69 80 59
-36 1 70 81 60
-37 2 71 82 61
-38 3 72 83 62
-39 4 49 84 63
-40 5 50 85 64
-41 6 51 86 65
-42 66 7 52 87
-43 88 67 8 53
-44 89 68 9 54
-45 55 90 69 10
-46 11 56 91 70
-47 12 57 92 71
-48 13 58 93 72
-49 1 25 39 73
-50 2 26 40 74
-51 3 27 41 75
-52 4 28 42 76
-53 77 5 29 43
-54 44 78 6 30
-55 45 79 7 31
-56 46 80 8 32
-57 33 47 81 9
-58 34 48 82 10
-59 11 35 25 83
-60 12 36 26 84
-61 13 37 27 85
-62 14 38 28 86
-63 15 39 29 87
-64 88 16 40 30
-65 89 17 41 31
-66 90 18 42 32
-67 33 91 19 43
-68 44 34 92 20
-69 45 35 93 21
-70 22 46 36 94
-71 23 47 37 95
-72 24 48 38 96
-73 49 28 74 96
-74 50 29 73 75
-75 51 30 74 76
-76 77 52 31 75
-77 78 53 32 76
-78 33 77 79 54
-79 55 34 78 80
-80 56 35 79 81
-81 57 36 80 82
-82 58 37 81 83
-83 59 38 82 84
-84 60 39 83 85
-85 61 40 84 86
-86 62 41 85 87
-87 88 63 42 86
-88 89 64 43 87
-89 44 88 90 65
-90 66 45 89 91
-91 67 46 90 92
-92 68 47 91 93
-93 69 48 92 94
-94 25 70 93 95
-95 26 71 94 96
-96 27 72 73 95
0

**************