C4graphGraph forms for C4 [ 96, 24 ] = KE_24(1,13,4,21,5)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 24 ] = KE_24(1,13,4,21,5).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {2, 3}, {22, 23}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {1, 2}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {48, 52}, {74, 79}, {90, 95}, {88, 93}, {82, 87}, {80, 85}, {3, 4}, {89, 94}, {81, 86}, {11, 12}, {19, 20}, {73, 78}, {16, 27}, {87, 92}, {83, 88}, {20, 31}, {17, 28}, {86, 91}, {84, 89}, {19, 30}, {7, 8}, {85, 90}, {23, 24}, {18, 29}, {76, 95}, {15, 26}, {73, 92}, {75, 94}, {14, 25}, {74, 93}, {32, 56}, {38, 62}, {37, 61}, {36, 60}, {35, 59}, {34, 58}, {33, 57}, {39, 63}, {64, 88}, {65, 89}, {66, 90}, {67, 91}, {68, 92}, {69, 93}, {70, 94}, {71, 95}, {1, 24}, {75, 80}, {79, 84}, {32, 60}, {35, 63}, {34, 62}, {33, 61}, {45, 49}, {46, 50}, {47, 51}, {76, 81}, {78, 83}, {15, 16}, {77, 82}, {4, 39}, {8, 43}, {12, 47}, {28, 56}, {31, 59}, {30, 58}, {29, 57}, {1, 36}, {3, 38}, {9, 44}, {11, 46}, {2, 37}, {10, 45}, {25, 49}, {31, 55}, {30, 54}, {29, 53}, {28, 52}, {27, 51}, {26, 50}, {72, 96}, {25, 53}, {27, 55}, {26, 54}, {5, 40}, {7, 42}, {77, 96}, {6, 41}, {1, 49}, {2, 50}, {3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11, 59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {21, 32}, {23, 34}, {22, 33}, {24, 35}, {91, 96}, {13, 48}, {26, 95}, {25, 94}, {16, 64}, {24, 72}, {23, 71}, {22, 70}, {21, 69}, {20, 68}, {17, 65}, {18, 66}, {19, 67}, {31, 76}, {28, 73}, {30, 75}, {29, 74}, {36, 64}, {37, 65}, {38, 66}, {39, 67}, {44, 72}, {40, 64}, {41, 65}, {42, 66}, {43, 67}, {44, 68}, {45, 69}, {46, 70}, {47, 71}, {56, 80}, {57, 81}, {58, 82}, {59, 83}, {60, 84}, {61, 85}, {62, 86}, {63, 87}, {40, 68}, {41, 69}, {42, 70}, {43, 71}, {32, 77}, {34, 79}, {48, 93}, {33, 78}, {35, 80}, {39, 84}, {43, 88}, {47, 92}, {36, 81}, {38, 83}, {44, 89}, {46, 91}, {37, 82}, {45, 90}, {48, 72}, {49, 73}, {50, 74}, {51, 75}, {52, 76}, {53, 77}, {54, 78}, {55, 79}, {27, 96}, {40, 85}, {42, 87}, {41, 86} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (4, 51)(5, 75)(6, 30)(7, 19)(8, 20)(9, 21)(10, 69)(11, 93)(12, 48)(16, 63)(17, 87)(18, 42)(22, 57)(23, 81)(24, 36)(27, 39)(28, 92)(29, 70)(31, 43)(32, 44)(34, 86)(35, 64)(40, 80)(41, 58)(46, 74)(47, 52)(53, 94)(55, 67)(56, 68)(59, 88)(60, 72)(65, 82)(71, 76)(77, 89)(79, 91)(84, 96)
b: (3, 50)(4, 46)(5, 70)(6, 42)(9, 56)(10, 28)(11, 52)(12, 48)(15, 62)(16, 34)(17, 58)(18, 30)(21, 68)(22, 40)(23, 64)(24, 36)(26, 38)(27, 79)(29, 75)(32, 44)(33, 85)(35, 81)(39, 91)(41, 87)(45, 73)(47, 93)(51, 74)(53, 94)(54, 66)(57, 80)(59, 76)(60, 72)(63, 86)(65, 82)(69, 92)(71, 88)(77, 89)(78, 90)(83, 95)(84, 96)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)
d: (2, 24, 49, 36)(3, 23, 73, 81)(4, 34, 92, 57)(5, 79, 87, 9)(6, 55, 42, 8)(10, 40, 74, 63)(11, 85, 93, 15)(12, 61, 48, 14)(16, 46, 80, 69)(17, 91, 75, 21)(18, 67, 30, 20)(22, 28, 86, 51)(25, 60, 37, 72)(26, 59, 90, 88)(27, 70, 56, 41)(29, 39, 58, 68)(31, 66, 43, 54)(32, 65, 96, 94)(33, 52, 62, 47)(35, 45, 64, 50)(38, 71, 78, 76)(44, 53, 84, 82)(77, 89)(83, 95)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 24 ]
96
-1 2 24 36 49
-2 1 3 37 50
-3 2 4 38 51
-4 3 5 39 52
-5 4 6 40 53
-6 5 7 41 54
-7 55 6 8 42
-8 56 7 9 43
-9 44 57 8 10
-10 11 45 58 9
-11 12 46 59 10
-12 11 13 47 60
-13 12 14 48 61
-14 13 25 15 62
-15 14 26 16 63
-16 15 27 17 64
-17 16 28 18 65
-18 66 17 29 19
-19 67 18 30 20
-20 68 19 31 21
-21 22 69 20 32
-22 33 23 70 21
-23 22 34 24 71
-24 1 23 35 72
-25 14 49 94 53
-26 15 50 95 54
-27 55 16 51 96
-28 56 17 73 52
-29 57 18 74 53
-30 58 19 75 54
-31 55 59 20 76
-32 77 56 60 21
-33 22 78 57 61
-34 23 79 58 62
-35 24 80 59 63
-36 1 81 60 64
-37 2 82 61 65
-38 66 3 83 62
-39 67 4 84 63
-40 68 5 85 64
-41 69 6 86 65
-42 66 70 7 87
-43 88 67 71 8
-44 89 68 72 9
-45 90 69 49 10
-46 11 91 70 50
-47 12 92 71 51
-48 13 93 72 52
-49 1 45 25 73
-50 2 46 26 74
-51 3 47 27 75
-52 4 48 28 76
-53 77 25 5 29
-54 78 26 6 30
-55 79 27 7 31
-56 80 28 8 32
-57 33 81 29 9
-58 34 82 30 10
-59 11 35 83 31
-60 12 36 84 32
-61 33 13 37 85
-62 34 14 38 86
-63 35 15 39 87
-64 88 36 16 40
-65 89 37 17 41
-66 90 38 18 42
-67 91 39 19 43
-68 44 92 40 20
-69 45 93 41 21
-70 22 46 94 42
-71 23 47 95 43
-72 44 24 48 96
-73 78 92 49 28
-74 79 93 50 29
-75 80 94 51 30
-76 81 95 52 31
-77 82 96 53 32
-78 33 83 73 54
-79 55 34 84 74
-80 56 35 85 75
-81 57 36 86 76
-82 77 58 37 87
-83 88 78 59 38
-84 89 79 60 39
-85 90 80 61 40
-86 91 81 62 41
-87 92 82 63 42
-88 93 83 64 43
-89 44 94 84 65
-90 66 45 95 85
-91 67 46 96 86
-92 68 47 73 87
-93 88 69 48 74
-94 89 25 70 75
-95 90 26 71 76
-96 77 91 27 72
0

**************