C4graphGraph forms for C4 [ 96, 26 ] = KE_24(1,1,4,21,7)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 26 ] = KE_24(1,1,4,21,7).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {2, 3}, {22, 23}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {1, 2}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {48, 52}, {3, 4}, {88, 95}, {80, 87}, {11, 12}, {19, 20}, {81, 88}, {87, 94}, {85, 92}, {83, 90}, {82, 89}, {86, 93}, {7, 8}, {84, 91}, {23, 24}, {74, 91}, {78, 95}, {76, 93}, {73, 90}, {77, 94}, {8, 31}, {75, 92}, {32, 56}, {36, 60}, {35, 59}, {34, 58}, {33, 57}, {37, 61}, {38, 62}, {39, 63}, {64, 88}, {65, 89}, {66, 90}, {67, 91}, {68, 92}, {69, 93}, {70, 94}, {71, 95}, {1, 24}, {79, 86}, {77, 84}, {3, 26}, {5, 28}, {7, 30}, {73, 80}, {75, 82}, {2, 25}, {78, 85}, {6, 29}, {74, 81}, {32, 60}, {35, 63}, {34, 62}, {33, 61}, {45, 49}, {46, 50}, {47, 51}, {4, 27}, {76, 83}, {15, 16}, {28, 56}, {31, 59}, {30, 58}, {29, 57}, {25, 49}, {31, 55}, {30, 54}, {29, 53}, {28, 52}, {27, 51}, {26, 50}, {72, 96}, {9, 32}, {11, 34}, {13, 36}, {15, 38}, {10, 33}, {14, 37}, {25, 53}, {27, 55}, {26, 54}, {12, 35}, {79, 96}, {1, 49}, {2, 50}, {3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11, 59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {1, 48}, {16, 39}, {24, 47}, {17, 40}, {89, 96}, {23, 46}, {21, 44}, {19, 42}, {18, 41}, {22, 45}, {20, 43}, {26, 95}, {25, 94}, {16, 64}, {24, 72}, {23, 71}, {22, 70}, {21, 69}, {20, 68}, {17, 65}, {18, 66}, {19, 67}, {31, 76}, {28, 73}, {30, 75}, {29, 74}, {36, 64}, {37, 65}, {38, 66}, {39, 67}, {44, 72}, {40, 64}, {41, 65}, {42, 66}, {43, 67}, {44, 68}, {45, 69}, {46, 70}, {47, 71}, {56, 80}, {57, 81}, {58, 82}, {59, 83}, {60, 84}, {61, 85}, {62, 86}, {63, 87}, {40, 68}, {41, 69}, {42, 70}, {43, 71}, {32, 77}, {34, 79}, {48, 93}, {33, 78}, {35, 80}, {39, 84}, {43, 88}, {47, 92}, {36, 81}, {38, 83}, {44, 89}, {46, 91}, {37, 82}, {45, 90}, {48, 72}, {49, 73}, {50, 74}, {51, 75}, {52, 76}, {53, 77}, {54, 78}, {55, 79}, {27, 96}, {40, 85}, {42, 87}, {41, 86} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 24)(3, 23)(4, 22)(5, 21)(6, 20)(7, 19)(8, 18)(9, 17)(10, 16)(11, 15)(12, 14)(25, 72)(26, 71)(27, 70)(28, 69)(29, 68)(30, 67)(31, 66)(32, 65)(33, 64)(34, 63)(35, 62)(36, 61)(37, 60)(38, 59)(39, 58)(40, 57)(41, 56)(42, 55)(43, 54)(44, 53)(45, 52)(46, 51)(47, 50)(48, 49)(73, 93)(74, 92)(75, 91)(76, 90)(77, 89)(78, 88)(79, 87)(80, 86)(81, 85)(82, 84)(94, 96)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)
c: (2, 48)(3, 52)(5, 27)(6, 55)(8, 30)(9, 58)(11, 33)(12, 61)(14, 36)(15, 64)(17, 39)(18, 67)(20, 42)(21, 70)(23, 45)(24, 49)(25, 72)(26, 76)(28, 51)(29, 79)(31, 54)(32, 82)(34, 57)(35, 85)(37, 60)(38, 88)(40, 63)(41, 91)(43, 66)(44, 94)(46, 69)(47, 73)(50, 93)(53, 96)(56, 75)(59, 78)(62, 81)(65, 84)(68, 87)(71, 90)(74, 86)(77, 89)(80, 92)(83, 95)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 26 ]
96
-1 2 24 48 49
-2 1 3 25 50
-3 2 4 26 51
-4 3 5 27 52
-5 4 6 28 53
-6 5 7 29 54
-7 55 6 8 30
-8 56 7 9 31
-9 57 8 10 32
-10 11 33 58 9
-11 12 34 59 10
-12 11 13 35 60
-13 12 14 36 61
-14 13 15 37 62
-15 14 16 38 63
-16 15 17 39 64
-17 16 18 40 65
-18 66 17 19 41
-19 67 18 20 42
-20 68 19 21 43
-21 22 44 69 20
-22 23 45 70 21
-23 22 24 46 71
-24 1 23 47 72
-25 2 49 94 53
-26 3 50 95 54
-27 55 4 51 96
-28 56 5 73 52
-29 57 6 74 53
-30 58 7 75 54
-31 55 59 8 76
-32 77 56 60 9
-33 78 57 61 10
-34 11 79 58 62
-35 12 80 59 63
-36 13 81 60 64
-37 14 82 61 65
-38 66 15 83 62
-39 67 16 84 63
-40 68 17 85 64
-41 69 18 86 65
-42 66 70 19 87
-43 88 67 71 20
-44 89 68 72 21
-45 22 90 69 49
-46 23 91 70 50
-47 24 92 71 51
-48 1 93 72 52
-49 1 45 25 73
-50 2 46 26 74
-51 3 47 27 75
-52 4 48 28 76
-53 77 25 5 29
-54 78 26 6 30
-55 79 27 7 31
-56 80 28 8 32
-57 33 81 29 9
-58 34 82 30 10
-59 11 35 83 31
-60 12 36 84 32
-61 33 13 37 85
-62 34 14 38 86
-63 35 15 39 87
-64 88 36 16 40
-65 89 37 17 41
-66 90 38 18 42
-67 91 39 19 43
-68 44 92 40 20
-69 45 93 41 21
-70 22 46 94 42
-71 23 47 95 43
-72 44 24 48 96
-73 90 80 49 28
-74 91 81 50 29
-75 92 82 51 30
-76 93 83 52 31
-77 94 84 53 32
-78 33 95 85 54
-79 55 34 96 86
-80 56 35 73 87
-81 88 57 36 74
-82 89 58 37 75
-83 90 59 38 76
-84 77 91 60 39
-85 78 92 61 40
-86 79 93 62 41
-87 80 94 63 42
-88 81 95 64 43
-89 44 82 96 65
-90 66 45 83 73
-91 67 46 84 74
-92 68 47 85 75
-93 69 48 86 76
-94 77 25 70 87
-95 88 78 26 71
-96 89 79 27 72
0

**************