C4graphGraph forms for C4 [ 96, 27 ] = KE_24(1,11,8,3,7)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 27 ] = KE_24(1,11,8,3,7).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {2, 3}, {22, 23}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {1, 2}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {3, 4}, {88, 95}, {80, 87}, {11, 12}, {19, 20}, {48, 56}, {81, 88}, {87, 94}, {85, 92}, {83, 90}, {82, 89}, {86, 93}, {16, 29}, {18, 31}, {7, 8}, {84, 91}, {23, 24}, {17, 30}, {74, 91}, {78, 95}, {76, 93}, {15, 28}, {77, 94}, {73, 90}, {12, 25}, {14, 27}, {13, 26}, {75, 92}, {32, 56}, {36, 60}, {35, 59}, {34, 58}, {33, 57}, {37, 61}, {38, 62}, {39, 63}, {41, 49}, {42, 50}, {43, 51}, {44, 52}, {45, 53}, {46, 54}, {47, 55}, {64, 88}, {65, 89}, {66, 90}, {67, 91}, {68, 92}, {69, 93}, {70, 94}, {71, 95}, {1, 24}, {79, 86}, {77, 84}, {73, 80}, {75, 82}, {74, 81}, {78, 85}, {15, 16}, {76, 83}, {25, 57}, {31, 63}, {30, 62}, {29, 61}, {28, 60}, {27, 59}, {26, 58}, {2, 39}, {8, 45}, {10, 47}, {1, 38}, {9, 46}, {25, 49}, {31, 55}, {30, 54}, {29, 53}, {28, 52}, {27, 51}, {26, 50}, {72, 96}, {3, 40}, {7, 44}, {4, 41}, {6, 43}, {5, 42}, {79, 96}, {1, 49}, {2, 50}, {3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11, 59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {19, 32}, {23, 36}, {20, 33}, {22, 35}, {21, 34}, {89, 96}, {11, 48}, {24, 37}, {29, 80}, {31, 82}, {45, 96}, {30, 81}, {16, 64}, {24, 72}, {23, 71}, {22, 70}, {21, 69}, {17, 65}, {18, 66}, {19, 67}, {20, 68}, {28, 79}, {25, 76}, {27, 78}, {26, 77}, {32, 64}, {36, 68}, {35, 67}, {34, 66}, {33, 65}, {37, 69}, {38, 70}, {39, 71}, {40, 72}, {47, 74}, {46, 73}, {40, 64}, {41, 65}, {42, 66}, {43, 67}, {44, 68}, {45, 69}, {46, 70}, {47, 71}, {56, 80}, {57, 81}, {58, 82}, {59, 83}, {60, 84}, {61, 85}, {62, 86}, {63, 87}, {32, 83}, {36, 87}, {40, 91}, {44, 95}, {33, 84}, {35, 86}, {41, 92}, {43, 94}, {34, 85}, {42, 93}, {48, 72}, {49, 73}, {50, 74}, {51, 75}, {52, 76}, {53, 77}, {54, 78}, {55, 79}, {48, 75}, {37, 88}, {39, 90}, {38, 89} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 38)(3, 89)(4, 65)(5, 17)(6, 18)(7, 19)(8, 32)(9, 83)(10, 59)(14, 26)(15, 77)(16, 53)(20, 44)(21, 95)(22, 71)(27, 58)(28, 84)(30, 42)(31, 43)(33, 52)(34, 78)(35, 47)(39, 70)(40, 96)(45, 64)(46, 90)(50, 62)(51, 82)(54, 66)(55, 67)(57, 76)(63, 94)(69, 88)(74, 86)(79, 91)(81, 93)
b: (2, 49, 38, 24)(3, 73, 89, 23)(4, 46, 96, 71)(5, 9, 79, 95)(6, 8, 55, 44)(10, 28, 78, 53)(11, 15, 85, 77)(12, 14, 61, 26)(16, 34, 84, 59)(17, 21, 91, 83)(18, 20, 67, 32)(22, 40, 90, 65)(25, 62, 37, 50)(27, 29, 58, 60)(30, 69, 74, 76)(31, 68, 43, 56)(33, 35, 64, 66)(36, 51, 80, 82)(39, 41, 70, 72)(42, 57, 86, 88)(45, 47, 52, 54)(48, 63, 92, 94)(75, 87)(81, 93)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)(25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)
d: (2, 49, 38, 24)(3, 41, 89, 72)(4, 65, 96, 40)(5, 33, 79, 64)(6, 20, 55, 32)(7, 19)(8, 67, 44, 18)(9, 35, 95, 66)(10, 59, 78, 34)(11, 27, 85, 58)(12, 14, 61, 26)(15, 29, 77, 60)(16, 53, 84, 28)(17, 45, 91, 52)(21, 47, 83, 54)(22, 71, 90, 46)(23, 39, 73, 70)(25, 62, 37, 50)(30, 69, 74, 76)(31, 56, 43, 68)(36, 63, 80, 94)(42, 57, 86, 88)(48, 51, 92, 82)(81, 93)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 27 ]
96
-1 2 24 38 49
-2 1 3 39 50
-3 2 4 40 51
-4 3 5 41 52
-5 4 6 42 53
-6 5 7 43 54
-7 44 55 6 8
-8 45 56 7 9
-9 46 57 8 10
-10 11 47 58 9
-11 12 48 59 10
-12 11 13 25 60
-13 12 14 26 61
-14 13 15 27 62
-15 14 16 28 63
-16 15 17 29 64
-17 16 18 30 65
-18 66 17 19 31
-19 67 18 20 32
-20 33 68 19 21
-21 22 34 69 20
-22 23 35 70 21
-23 22 24 36 71
-24 1 23 37 72
-25 12 57 49 76
-26 77 13 58 50
-27 78 14 59 51
-28 79 15 60 52
-29 80 16 61 53
-30 81 17 62 54
-31 55 82 18 63
-32 56 83 19 64
-33 57 84 20 65
-34 66 58 85 21
-35 22 67 59 86
-36 23 68 60 87
-37 88 24 69 61
-38 1 89 70 62
-39 2 90 71 63
-40 3 91 72 64
-41 4 92 49 65
-42 66 5 93 50
-43 67 6 94 51
-44 68 7 95 52
-45 69 8 96 53
-46 70 73 9 54
-47 55 71 74 10
-48 11 56 72 75
-49 1 25 73 41
-50 2 26 74 42
-51 3 27 75 43
-52 44 4 28 76
-53 77 45 5 29
-54 78 46 6 30
-55 79 47 7 31
-56 80 48 8 32
-57 33 25 81 9
-58 34 26 82 10
-59 11 35 27 83
-60 12 36 28 84
-61 13 37 29 85
-62 14 38 30 86
-63 15 39 31 87
-64 88 16 40 32
-65 33 89 17 41
-66 34 90 18 42
-67 35 91 19 43
-68 44 36 92 20
-69 45 37 93 21
-70 22 46 38 94
-71 23 47 39 95
-72 24 48 40 96
-73 46 90 80 49
-74 47 91 81 50
-75 48 92 82 51
-76 25 93 83 52
-77 26 94 84 53
-78 27 95 85 54
-79 55 28 96 86
-80 56 29 73 87
-81 88 57 30 74
-82 89 58 31 75
-83 90 59 32 76
-84 33 77 91 60
-85 34 78 92 61
-86 35 79 93 62
-87 36 80 94 63
-88 37 81 95 64
-89 38 82 96 65
-90 66 39 83 73
-91 67 40 84 74
-92 68 41 85 75
-93 69 42 86 76
-94 77 70 43 87
-95 44 88 78 71
-96 45 89 79 72
0

**************