C4graphGraph forms for C4 [ 96, 29 ] = PL(Curtain_12(1,6,1,5,11),[4^12,4^12])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 29 ] = PL(Curtain_12(1,6,1,5,11),[4^12,4^12]).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {48, 52}, {48, 53}, {38, 55}, {40, 58}, {32, 56}, {45, 53}, {42, 50}, {47, 53}, {44, 55}, {46, 53}, {38, 59}, {47, 50}, {41, 55}, {33, 62}, {43, 52}, {17, 49}, {27, 59}, {28, 60}, {19, 50}, {29, 60}, {16, 51}, {25, 58}, {25, 61}, {29, 58}, {22, 62}, {31, 55}, {21, 60}, {22, 60}, {30, 52}, {17, 58}, {23, 59}, {30, 50}, {21, 56}, {26, 52}, {1, 49}, {15, 63}, {13, 61}, {8, 56}, {6, 54}, {3, 51}, {10, 57}, {14, 61}, {13, 62}, {2, 54}, {15, 59}, {12, 56}, {5, 49}, {3, 54}, {1, 54}, {14, 57}, {9, 62}, {4, 51}, {7, 63}, {9, 49}, {8, 51}, {5, 57}, {2, 63}, {4, 57}, {1, 63}, {2, 61}, {6, 70}, {3, 66}, {17, 80}, {5, 68}, {20, 86}, {21, 87}, {8, 75}, {20, 87}, {10, 73}, {24, 91}, {35, 96}, {9, 77}, {23, 82}, {28, 89}, {29, 88}, {4, 66}, {31, 89}, {18, 85}, {23, 80}, {20, 83}, {26, 93}, {8, 64}, {27, 83}, {3, 74}, {25, 80}, {31, 86}, {12, 70}, {14, 68}, {27, 81}, {5, 78}, {6, 74}, {44, 96}, {19, 95}, {12, 64}, {10, 70}, {27, 87}, {29, 81}, {18, 95}, {13, 67}, {22, 88}, {1, 78}, {18, 93}, {11, 68}, {6, 73}, {26, 85}, {18, 66}, {24, 72}, {21, 69}, {30, 78}, {7, 86}, {19, 66}, {11, 90}, {9, 90}, {23, 68}, {14, 93}, {26, 73}, {10, 94}, {28, 72}, {20, 65}, {12, 91}, {22, 65}, {13, 90}, {24, 79}, {30, 73}, {16, 72}, {11, 82}, {28, 69}, {4, 94}, {25, 67}, {16, 75}, {17, 77}, {7, 90}, {19, 78}, {11, 86}, {24, 70}, {31, 65}, {2, 93}, {16, 79}, {15, 80}, {33, 65}, {39, 71}, {37, 69}, {34, 64}, {47, 77}, {46, 76}, {35, 64}, {44, 79}, {46, 75}, {33, 71}, {44, 74}, {41, 79}, {7, 96}, {42, 77}, {32, 71}, {36, 67}, {35, 74}, {39, 76}, {48, 91}, {32, 76}, {37, 75}, {45, 67}, {43, 69}, {15, 96}, {40, 71}, {39, 72}, {34, 82}, {43, 91}, {35, 83}, {36, 84}, {34, 83}, {46, 95}, {45, 92}, {37, 84}, {36, 85}, {42, 88}, {47, 92}, {40, 92}, {32, 87}, {41, 94}, {38, 81}, {45, 85}, {40, 81}, {37, 95}, {41, 82}, {34, 94}, {48, 76}, {36, 88}, {33, 92}, {39, 89}, {42, 84}, {38, 89}, {43, 84} }>;

(II) A more general form is to represent the graph as the orbit of {48, 52} under the group generated by the following permutations:

a: (1, 3)(2, 6)(4, 5)(7, 35)(8, 9)(10, 14)(11, 34)(12, 13)(15, 44)(16, 17)(18, 30)(21, 22)(23, 41)(24, 25)(27, 31)(28, 29)(32, 33)(36, 43)(37, 42)(39, 40)(45, 48)(46, 47)(49, 51)(50, 95)(52, 85)(55, 59)(56, 62)(58, 72)(61, 70)(63, 74)(64, 90)(65, 87)(66, 78)(67, 91)(68, 94)(69, 88)(73, 93)(75, 77)(76, 92)(79, 80)(81, 89)(83, 86)
b: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(8, 22)(10, 25)(11, 18)(12, 29)(15, 30)(16, 33)(20, 37)(23, 26)(24, 40)(27, 43)(28, 32)(31, 46)(34, 36)(35, 42)(38, 48)(41, 45)(44, 47)(49, 54)(50, 96)(51, 62)(52, 59)(53, 55)(56, 60)(57, 61)(58, 70)(63, 78)(64, 88)(65, 75)(66, 90)(67, 94)(68, 93)(69, 87)(71, 72)(73, 80)(74, 77)(76, 89)(79, 92)(81, 91)(82, 85)(83, 84)(86, 95)
c: (1, 2)(5, 14)(9, 13)(17, 25)(18, 19)(26, 30)(36, 42)(45, 47)(49, 61)(50, 85)(67, 77)(78, 93)
d: (7, 15)(9, 17)(11, 23)(13, 25)(20, 27)(22, 29)(31, 38)(33, 40)(58, 62)(59, 86)(65, 81)(80, 90)
e: (8, 16)(12, 24)(20, 31)(21, 28)(27, 38)(32, 39)(34, 41)(35, 44)(55, 83)(56, 72)(64, 79)(87, 89)
f: (3, 7)(4, 11)(6, 15)(8, 20)(9, 19)(10, 23)(12, 27)(13, 18)(16, 31)(17, 30)(22, 37)(24, 38)(25, 26)(29, 43)(33, 46)(40, 48)(49, 78)(50, 77)(51, 86)(52, 58)(53, 92)(54, 63)(55, 79)(56, 87)(57, 68)(59, 70)(60, 69)(61, 93)(62, 95)(64, 83)(65, 75)(66, 90)(67, 85)(71, 76)(72, 89)(73, 80)(74, 96)(81, 91)(82, 94)(84, 88)
g: (3, 6)(4, 10)(8, 12)(16, 24)(18, 26)(19, 30)(37, 43)(46, 48)(51, 70)(52, 95)(66, 73)(75, 91)
h: (21, 32)(22, 33)(28, 39)(29, 40)(36, 45)(37, 46)(42, 47)(43, 48)(53, 84)(60, 71)(69, 76)(88, 92)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 29 ]
96
-1 78 49 63 54
-2 93 61 63 54
-3 66 51 74 54
-4 66 57 94 51
-5 78 57 68 49
-6 70 73 74 54
-7 90 63 96 86
-8 56 51 64 75
-9 77 90 49 62
-10 57 70 94 73
-11 68 90 82 86
-12 56 91 70 64
-13 67 90 61 62
-14 57 68 93 61
-15 80 59 63 96
-16 79 72 51 75
-17 77 58 80 49
-18 66 93 95 85
-19 66 78 50 95
-20 83 86 65 87
-21 56 69 60 87
-22 88 60 62 65
-23 68 80 59 82
-24 79 91 70 72
-25 67 58 80 61
-26 93 73 52 85
-27 59 81 83 87
-28 89 69 60 72
-29 88 58 81 60
-30 78 50 73 52
-31 55 89 86 65
-32 56 71 76 87
-33 92 71 62 65
-34 82 83 94 64
-35 83 74 96 64
-36 88 67 84 85
-37 69 84 95 75
-38 55 89 59 81
-39 89 71 72 76
-40 58 81 92 71
-41 55 79 82 94
-42 77 88 50 84
-43 69 91 84 52
-44 55 79 74 96
-45 67 92 85 53
-46 95 53 75 76
-47 77 92 50 53
-48 91 52 53 76
-49 1 5 17 9
-50 47 19 30 42
-51 3 4 16 8
-52 26 48 30 43
-53 45 46 47 48
-54 1 2 3 6
-55 44 38 41 31
-56 12 8 21 32
-57 14 4 5 10
-58 25 17 29 40
-59 23 15 27 38
-60 22 28 29 21
-61 2 13 14 25
-62 22 33 13 9
-63 1 2 15 7
-64 12 34 35 8
-65 22 33 20 31
-66 3 4 18 19
-67 45 13 25 36
-68 11 23 14 5
-69 37 28 21 43
-70 12 24 6 10
-71 33 39 40 32
-72 24 16 28 39
-73 26 6 30 10
-74 44 35 3 6
-75 46 37 16 8
-76 46 48 39 32
-77 47 17 9 42
-78 1 5 19 30
-79 44 24 16 41
-80 23 25 15 17
-81 27 38 29 40
-82 11 23 34 41
-83 34 35 27 20
-84 36 37 42 43
-85 45 36 26 18
-86 11 7 20 31
-87 27 20 21 32
-88 22 36 29 42
-89 38 28 39 31
-90 11 13 7 9
-91 12 24 48 43
-92 33 45 47 40
-93 2 14 26 18
-94 34 4 41 10
-95 46 37 18 19
-96 44 35 15 7
0

**************