[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 31 ] =
PL(Curtain_12(1,6,5,7,11),[4^12,8^6]).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {48, 53}, {37, 53}, {42, 58}, {38, 50}, {39, 51}, {47, 56}, {43,
51}, {45, 53}, {32, 57}, {47, 53}, {40, 51}, {36, 56}, {33, 62}, {45, 50}, {17,
49}, {20, 52}, {26, 58}, {29, 60}, {30, 60}, {27, 56}, {30, 58}, {23, 50}, {16,
54}, {26, 61}, {22, 62}, {21, 60}, {27, 50}, {18, 56}, {22, 60}, {17, 58}, {31,
52}, {21, 57}, {31, 51}, {1, 49}, {15, 63}, {13, 61}, {6, 55}, {10, 59}, {8,
57}, {4, 54}, {7, 52}, {14, 61}, {13, 62}, {3, 55}, {5, 49}, {2, 55}, {14, 59},
{12, 57}, {3, 54}, {1, 55}, {9, 62}, {7, 63}, {9, 49}, {2, 63}, {1, 63}, {8,
54}, {5, 59}, {2, 61}, {11, 52}, {4, 59}, {6, 70}, {29, 93}, {3, 66}, {20, 85},
{27, 90}, {28, 93}, {21, 87}, {10, 73}, {19, 80}, {9, 77}, {18, 86}, {15, 75},
{5, 64}, {20, 81}, {19, 86}, {25, 92}, {4, 66}, {8, 78}, {30, 88}, {23, 80},
{24, 95}, {18, 90}, {31, 87}, {3, 74}, {20, 93}, {13, 68}, {8, 65}, {28, 85},
{12, 70}, {24, 82}, {11, 64}, {6, 74}, {44, 96}, {10, 70}, {12, 65}, {14, 64},
{22, 88}, {28, 82}, {31, 81}, {6, 73}, {30, 81}, {9, 89}, {48, 96}, {21, 69},
{18, 66}, {12, 92}, {1, 80}, {19, 66}, {10, 91}, {25, 72}, {26, 75}, {11, 89},
{27, 73}, {7, 84}, {24, 75}, {11, 95}, {14, 90}, {13, 89}, {5, 80}, {22, 67},
{25, 76}, {29, 72}, {2, 90}, {24, 64}, {16, 72}, {29, 69}, {17, 75}, {15, 84},
{16, 76}, {17, 77}, {15, 82}, {7, 89}, {23, 73}, {16, 78}, {26, 68}, {4, 91},
{25, 70}, {28, 67}, {41, 72}, {33, 67}, {47, 77}, {45, 79}, {35, 65}, {34, 65},
{45, 78}, {38, 69}, {33, 71}, {41, 79}, {32, 71}, {43, 76}, {38, 78}, {48, 88},
{44, 68}, {35, 74}, {36, 77}, {37, 79}, {39, 76}, {46, 69}, {40, 67}, {39, 74},
{42, 71}, {41, 71}, {32, 79}, {43, 91}, {44, 94}, {46, 92}, {19, 96}, {37, 86},
{41, 93}, {48, 68}, {42, 94}, {38, 83}, {34, 84}, {35, 85}, {23, 96}, {47, 88},
{32, 87}, {34, 85}, {36, 83}, {39, 95}, {46, 86}, {34, 91}, {37, 92}, {36, 94},
{40, 82}, {42, 81}, {35, 95}, {46, 83}, {33, 94}, {44, 83}, {43, 84}, {40, 87}
}>;
(II) A more general form is to represent the graph as the orbit of {48, 53}
under the group generated by the following permutations:
a: (1, 3)(2, 6)(4, 5)(7, 35)(8, 9)(10, 14)(11, 34)(12, 13)(15, 39)(16, 17)(18,
23)(21, 33)(22, 32)(24, 43)(25, 26)(28, 31)(29, 42)(30, 41)(36, 38)(37, 48)(44,
46)(45, 47)(49, 54)(50, 56)(51, 82)(52, 85)(57, 62)(58, 72)(60, 71)(61, 70)(63,
74)(64, 91)(65, 89)(66, 80)(67, 87)(68, 92)(69, 94)(73, 90)(75, 76)(77, 78)(79,
88)(81, 93)(84, 95)(86, 96) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (3, 6)(4, 10)(8, 12)(16, 25)(18, 27)(19, 23)(37, 45)(38, 46)(50, 86)(54,
70)(66, 73)(78, 92)
c: (7, 15)(9, 17)(11, 24)(13, 26)(20, 28)(22, 30)(31, 40)(33, 42)(52, 82)(58,
62)(67, 81)(75, 89)
d: (8, 16)(12, 25)(20, 31)(21, 29)(28, 40)(32, 41)(34, 43)(35, 39)(51, 85)(57,
72)(65, 76)(87, 93)
e: (3, 7, 6, 15)(4, 11, 10, 24)(8, 20, 12, 28)(9, 23, 17, 19)(13, 27, 26,
18)(16, 31, 25, 40)(21, 41)(22, 45, 30, 37)(29, 32)(33, 38, 42, 46)(34, 35)(36,
44)(39, 43)(47, 48)(49, 80)(50, 58, 86, 62)(51, 76)(52, 70, 82, 54)(53, 88)(55,
63)(56, 68)(57, 93)(59, 64)(60, 79)(61, 90)(65, 85)(66, 89, 73, 75)(67, 78, 81,
92)(69, 71)(72, 87)(74, 84)(77, 96)(83, 94)(91, 95)
f: (21, 32)(22, 33)(29, 41)(30, 42)(36, 47)(37, 46)(38, 45)(44, 48)(53, 83)(60,
71)(69, 79)(88, 94)
g: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(8, 22, 16, 33)(10, 26)(11, 18)(12, 30, 25,
42)(15, 23)(20, 37, 31, 46)(21, 29, 41, 32)(24, 27)(28, 45, 40, 38)(34, 48, 43,
44)(35, 47, 39, 36)(49, 55)(50, 82)(51, 83, 85, 53)(52, 86)(54, 62)(56, 95)(57,
60, 72, 71)(58, 70)(59, 61)(63, 80)(64, 90)(65, 88, 76, 94)(66, 89)(67, 78)(68,
91)(69, 93, 79, 87)(73, 75)(74, 77)(81, 92)(84, 96)
h: (1, 2)(5, 14)(9, 13)(17, 26)(18, 19)(23, 27)(36, 44)(47, 48)(49, 61)(56,
96)(68, 77)(80, 90)
C4[ 96, 31 ]
96
-1 55 80 49 63
-2 55 90 61 63
-3 55 66 74 54
-4 66 91 59 54
-5 80 59 49 64
-6 55 70 73 74
-7 89 84 52 63
-8 78 57 54 65
-9 77 89 49 62
-10 91 59 70 73
-11 89 95 52 64
-12 57 70 92 65
-13 89 68 61 62
-14 90 59 61 64
-15 82 84 63 75
-16 78 72 54 76
-17 77 58 49 75
-18 66 56 90 86
-19 66 80 96 86
-20 81 93 52 85
-21 57 69 60 87
-22 88 67 60 62
-23 80 50 73 96
-24 82 95 64 75
-25 70 92 72 76
-26 68 58 61 75
-27 56 90 50 73
-28 67 82 93 85
-29 69 60 93 72
-30 88 58 81 60
-31 81 51 52 87
-32 57 79 71 87
-33 67 71 94 62
-34 91 84 85 65
-35 95 74 85 65
-36 77 56 83 94
-37 79 92 53 86
-38 78 69 50 83
-39 51 95 74 76
-40 67 82 51 87
-41 79 71 93 72
-42 58 81 71 94
-43 91 51 84 76
-44 68 83 94 96
-45 78 79 50 53
-46 69 92 83 86
-47 77 88 56 53
-48 88 68 96 53
-49 1 5 17 9
-50 23 45 27 38
-51 39 40 31 43
-52 11 7 20 31
-53 45 47 37 48
-54 3 4 16 8
-55 1 2 3 6
-56 36 47 27 18
-57 12 8 21 32
-58 26 17 30 42
-59 14 4 5 10
-60 22 29 30 21
-61 2 13 14 26
-62 22 33 13 9
-63 1 2 15 7
-64 11 24 14 5
-65 12 34 35 8
-66 3 4 18 19
-67 22 33 28 40
-68 44 13 26 48
-69 46 38 29 21
-70 12 25 6 10
-71 33 41 42 32
-72 25 16 29 41
-73 23 27 6 10
-74 35 3 6 39
-75 24 15 26 17
-76 25 16 39 43
-77 36 47 17 9
-78 45 16 38 8
-79 45 37 41 32
-80 1 23 5 19
-81 30 20 31 42
-82 24 15 28 40
-83 44 46 36 38
-84 34 15 7 43
-85 34 35 28 20
-86 46 37 18 19
-87 40 31 21 32
-88 22 47 48 30
-89 11 13 7 9
-90 2 14 27 18
-91 34 4 10 43
-92 12 46 25 37
-93 28 29 41 20
-94 33 44 36 42
-95 11 24 35 39
-96 44 23 48 19
0