[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 96, 31 ]. See Glossary for some
detail.
PL(Curtain_ 12( 1, 6, 5, 7, 11), [4^12, 8^6]) = PL(CS(R_ 6( 5, 4)[
4^ 6], 1)) = SS[ 96, 18]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | - | 0 | 0 |
2 | - | - | - | - | 0 7 | - | 0 | 6 |
3 | - | - | - | - | - | 0 10 | 0 | 7 |
4 | - | - | - | - | - | 0 4 | 6 | 7 |
5 | 0 11 | 0 5 | - | - | - | - | - | - |
6 | - | - | 0 2 | 0 8 | - | - | - | - |
7 | 0 | 0 | 0 | 6 | - | - | - | - |
8 | 0 | 6 | 5 | 5 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 | - |
2 | - | - | - | - | - | - | 4 | - | 4 | 0 | 0 | - |
3 | - | - | - | - | - | - | - | 0 | - | 0 | 1 | 0 |
4 | - | - | - | - | - | - | - | 4 | - | 4 | 1 | 0 |
5 | - | - | - | - | - | - | 0 | 3 | 2 | - | - | 6 |
6 | - | - | - | - | - | - | 4 | 3 | 6 | - | - | 6 |
7 | 0 | 4 | - | - | 0 | 4 | - | - | - | - | - | - |
8 | - | - | 0 | 4 | 5 | 5 | - | - | - | - | - | - |
9 | 0 | 4 | - | - | 6 | 2 | - | - | - | - | - | - |
10 | 0 | 0 | 0 | 4 | - | - | - | - | - | - | - | - |
11 | 0 | 0 | 7 | 7 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 2 | 2 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | - | 0 1 | - |
2 | - | - | - | - | - | - | 4 | - | 4 | - | 0 1 | - |
3 | - | - | - | - | - | - | 2 | 0 | 7 | - | - | 0 |
4 | - | - | - | - | - | - | 0 | 6 | 1 | - | - | 2 |
5 | - | - | - | - | - | - | - | 0 | - | 0 1 | - | 7 |
6 | - | - | - | - | - | - | - | 3 | - | 0 7 | - | 2 |
7 | 0 | 4 | 6 | 0 | - | - | - | - | - | - | - | - |
8 | - | - | 0 | 2 | 0 | 5 | - | - | - | - | - | - |
9 | 0 | 4 | 1 | 7 | - | - | - | - | - | - | - | - |
10 | - | - | - | - | 0 7 | 0 1 | - | - | - | - | - | - |
11 | 0 7 | 0 7 | - | - | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 6 | 1 | 6 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | - | 0 | 0 |
2 | - | - | - | - | - | - | 4 | - | 0 | - | 4 | 0 |
3 | - | - | - | - | - | - | - | 0 1 | - | - | 7 | 0 |
4 | - | - | - | - | - | - | - | 0 1 | - | - | 3 | 4 |
5 | - | - | - | - | - | - | 3 | - | 0 | 0 5 | - | - |
6 | - | - | - | - | - | - | 7 | - | 4 | 0 5 | - | - |
7 | 0 | 4 | - | - | 5 | 1 | - | - | - | - | - | - |
8 | - | - | 0 7 | 0 7 | - | - | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 0 | 4 | - | - | - | - | - | - |
10 | - | - | - | - | 0 3 | 0 3 | - | - | - | - | - | - |
11 | 0 | 4 | 1 | 5 | - | - | - | - | - | - | - | - |
12 | 0 | 0 | 0 | 4 | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 | - |
2 | - | - | - | - | - | - | 4 | - | 4 | 0 | 0 | - |
3 | - | - | - | - | - | - | - | 0 | - | 0 | 1 | 0 |
4 | - | - | - | - | - | - | - | 4 | - | 4 | 1 | 0 |
5 | - | - | - | - | - | - | 0 | 3 | 6 | - | - | 6 |
6 | - | - | - | - | - | - | 4 | 3 | 2 | - | - | 6 |
7 | 0 | 4 | - | - | 0 | 4 | - | - | - | - | - | - |
8 | - | - | 0 | 4 | 5 | 5 | - | - | - | - | - | - |
9 | 0 | 4 | - | - | 2 | 6 | - | - | - | - | - | - |
10 | 0 | 0 | 0 | 4 | - | - | - | - | - | - | - | - |
11 | 0 | 0 | 7 | 7 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 2 | 2 | - | - | - | - | - | - |