[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 32 ] =
AMC(6,8,[5.5:5.2]).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {48, 50}, {32, 37}, {80, 85}, {32, 42}, {80, 90}, {48, 59}, {16,
28}, {64, 76}, {1, 17}, {2, 18}, {3, 19}, {4, 20}, {5, 21}, {6, 22}, {7, 23},
{8, 24}, {9, 25}, {10, 26}, {11, 27}, {12, 28}, {13, 29}, {14, 30}, {15, 31},
{64, 80}, {37, 52}, {41, 56}, {45, 60}, {36, 54}, {78, 92}, {44, 62}, {40, 58},
{70, 84}, {74, 88}, {5, 17}, {6, 18}, {7, 19}, {12, 24}, {13, 25}, {14, 26},
{15, 27}, {39, 50}, {47, 58}, {72, 93}, {33, 55}, {79, 89}, {77, 91}, {43, 61},
{41, 63}, {35, 53}, {69, 83}, {71, 81}, {38, 49}, {79, 88}, {46, 57}, {66, 91},
{78, 87}, {70, 95}, {74, 83}, {34, 56}, {76, 86}, {38, 60}, {46, 52}, {68, 94},
{72, 82}, {36, 63}, {77, 86}, {44, 55}, {40, 51}, {65, 90}, {69, 94}, {73, 82},
{1, 29}, {2, 30}, {3, 31}, {8, 20}, {9, 21}, {10, 22}, {11, 23}, {35, 62}, {43,
54}, {68, 89}, {76, 81}, {37, 59}, {39, 57}, {45, 51}, {47, 49}, {65, 95}, {67,
93}, {73, 87}, {75, 85}, {34, 61}, {42, 53}, {67, 92}, {75, 84}, {18, 48}, {66,
96}, {4, 32}, {23, 48}, {71, 96}, {16, 32}, {22, 36}, {30, 44}, {26, 40}, {24,
45}, {21, 35}, {31, 41}, {29, 43}, {23, 33}, {31, 40}, {18, 43}, {30, 39}, {26,
35}, {22, 47}, {20, 46}, {28, 38}, {24, 34}, {17, 42}, {29, 38}, {25, 34}, {21,
46}, {20, 41}, {28, 33}, {17, 47}, {27, 37}, {25, 39}, {19, 45}, {19, 44}, {27,
36}, {16, 81}, {16, 90}, {4, 85}, {8, 89}, {12, 93}, {6, 84}, {10, 88}, {14,
92}, {2, 87}, {10, 95}, {5, 83}, {15, 89}, {7, 81}, {13, 91}, {1, 86}, {9, 94},
{4, 94}, {8, 82}, {12, 86}, {3, 88}, {15, 84}, {7, 92}, {6, 91}, {14, 83}, {1,
95}, {3, 93}, {9, 87}, {11, 85}, {5, 90}, {13, 82}, {33, 64}, {2, 96}, {52, 80},
{42, 64}, {11, 96}, {49, 65}, {50, 66}, {51, 67}, {52, 68}, {53, 69}, {54, 70},
{55, 71}, {56, 72}, {57, 73}, {58, 74}, {59, 75}, {60, 76}, {61, 77}, {62, 78},
{63, 79}, {53, 65}, {54, 66}, {55, 67}, {60, 72}, {61, 73}, {62, 74}, {63, 75},
{49, 77}, {50, 78}, {51, 79}, {56, 68}, {57, 69}, {58, 70}, {59, 71} }>;
(II) A more general form is to represent the graph as the orbit of {48, 50}
under the group generated by the following permutations:
a: (1, 2)(3, 4)(5, 14)(6, 13)(7, 16)(8, 15)(9, 10)(11, 12)(17, 30)(18, 29)(19,
32)(20, 31)(21, 26)(22, 25)(23, 28)(24, 27)(34, 36)(37, 45)(38, 48)(39, 47)(40,
46)(42, 44)(49, 50)(51, 52)(53, 62)(54, 61)(55, 64)(56, 63)(57, 58)(59, 60)(65,
78)(66, 77)(67, 80)(68, 79)(69, 74)(70, 73)(71, 76)(72, 75)(82, 84)(85, 93)(86,
96)(87, 95)(88, 94)(90, 92) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 7)(3, 9)(4, 15)(5, 10)(6, 16)(12, 13)(17, 95)(18, 81)(19, 87)(20, 89)(21,
88)(22, 90)(23, 96)(24, 82)(25, 93)(26, 83)(27, 85)(28, 91)(29, 86)(30, 92)(31,
94)(32, 84)(33, 66)(34, 72)(35, 74)(36, 80)(37, 75)(38, 77)(39, 67)(40, 69)(41,
68)(42, 70)(43, 76)(44, 78)(45, 73)(46, 79)(47, 65)(48, 71)(50, 55)(51, 57)(52,
63)(53, 58)(54, 64)(60, 61)
c: (1, 17, 42, 64, 76, 86)(2, 31, 39, 63, 78, 89)(3, 25, 36, 62, 68, 96)(4, 23,
45, 61, 70, 83)(5, 32, 33, 60, 77, 95)(6, 26, 46, 59, 67, 82)(7, 24, 43, 58, 69,
85)(8, 18, 40, 57, 75, 92)(9, 27, 44, 56, 66, 88)(10, 21, 37, 55, 72, 91)(11,
19, 34, 54, 74, 94)(12, 29, 47, 53, 80, 81)(13, 22, 35, 52, 71, 93)(14, 20, 48,
51, 73, 84)(15, 30, 41, 50, 79, 87)(16, 28, 38, 49, 65, 90)
d: (2, 4)(5, 13)(6, 16)(7, 15)(8, 14)(10, 12)(17, 29)(18, 32)(19, 31)(20,
30)(21, 25)(22, 28)(23, 27)(24, 26)(33, 36)(34, 35)(37, 48)(38, 47)(39, 46)(40,
45)(41, 44)(42, 43)(50, 52)(53, 61)(54, 64)(55, 63)(56, 62)(58, 60)(65, 77)(66,
80)(67, 79)(68, 78)(69, 73)(70, 76)(71, 75)(72, 74)(81, 84)(82, 83)(85, 96)(86,
95)(87, 94)(88, 93)(89, 92)(90, 91)
C4[ 96, 32 ]
96
-1 17 29 95 86
-2 18 30 96 87
-3 88 93 19 31
-4 94 85 20 32
-5 90 17 83 21
-6 22 91 18 84
-7 23 81 92 19
-8 89 24 82 20
-9 25 94 21 87
-10 22 88 26 95
-11 23 27 85 96
-12 24 93 28 86
-13 25 91 82 29
-14 26 92 83 30
-15 89 27 84 31
-16 90 81 28 32
-17 1 47 5 42
-18 2 48 6 43
-19 44 45 3 7
-20 46 4 8 41
-21 35 46 5 9
-22 36 47 6 10
-23 11 33 48 7
-24 12 34 45 8
-25 34 13 39 9
-26 35 14 40 10
-27 11 36 15 37
-28 33 12 16 38
-29 1 13 38 43
-30 44 2 14 39
-31 3 15 40 41
-32 4 37 16 42
-33 55 23 28 64
-34 56 24 25 61
-35 26 62 53 21
-36 22 27 63 54
-37 59 27 52 32
-38 49 60 28 29
-39 57 25 50 30
-40 58 26 51 31
-41 56 63 20 31
-42 17 53 64 32
-43 61 18 29 54
-44 55 62 19 30
-45 24 60 51 19
-46 57 52 20 21
-47 22 58 49 17
-48 23 59 50 18
-49 77 47 38 65
-50 66 78 48 39
-51 45 67 79 40
-52 46 68 80 37
-53 35 69 42 65
-54 66 36 70 43
-55 33 44 67 71
-56 34 68 72 41
-57 46 69 39 73
-58 47 70 40 74
-59 37 48 71 75
-60 45 38 72 76
-61 77 34 73 43
-62 44 78 35 74
-63 79 36 41 75
-64 33 80 42 76
-65 90 49 95 53
-66 91 50 96 54
-67 55 92 93 51
-68 56 89 94 52
-69 57 83 94 53
-70 58 84 95 54
-71 55 59 81 96
-72 56 60 82 93
-73 57 82 61 87
-74 88 58 83 62
-75 59 84 63 85
-76 81 60 64 86
-77 91 49 61 86
-78 92 50 62 87
-79 88 89 51 63
-80 90 52 85 64
-81 16 71 7 76
-82 13 72 73 8
-83 14 69 5 74
-84 15 70 6 75
-85 11 80 4 75
-86 77 1 12 76
-87 78 2 73 9
-88 79 3 74 10
-89 68 79 15 8
-90 80 5 16 65
-91 66 77 13 6
-92 67 78 14 7
-93 12 67 3 72
-94 68 69 4 9
-95 1 70 10 65
-96 11 66 2 71
0