[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 33 ] =
PL(ProjLR(3,4)).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {24, 25}, {48, 49}, {58, 59}, {40, 43}, {44, 47}, {58, 62}, {40,
45}, {16, 22}, {83, 85}, {49, 55}, {34, 37}, {90, 93}, {74, 77}, {1, 9}, {35,
43}, {64, 73}, {32, 42}, {87, 93}, {81, 91}, {37, 47}, {65, 75}, {5, 14}, {85,
94}, {38, 45}, {64, 75}, {83, 95}, {22, 27}, {2, 12}, {83, 93}, {18, 28}, {66,
76}, {67, 76}, {87, 88}, {85, 90}, {8, 24}, {6, 20}, {74, 88}, {9, 27}, {46,
60}, {2, 17}, {66, 81}, {9, 29}, {72, 92}, {5, 19}, {66, 84}, {36, 50}, {39,
48}, {15, 23}, {45, 53}, {37, 60}, {78, 84}, {77, 86}, {3, 31}, {36, 56}, {4,
25}, {13, 19}, {76, 82}, {33, 63}, {44, 51}, {47, 48}, {31, 63}, {13, 44}, {14,
47}, {7, 37}, {21, 55}, {10, 40}, {27, 56}, {68, 96}, {17, 52}, {29, 56}, {31,
57}, {10, 34}, {15, 39}, {11, 34}, {29, 52}, {28, 54}, {7, 44}, {21, 57}, {26,
54}, {11, 38}, {23, 58}, {5, 43}, {30, 48}, {6, 41}, {26, 53}, {19, 35}, {20,
36}, {12, 61}, {16, 33}, {18, 32}, {26, 41}, {6, 50}, {3, 54}, {3, 53}, {10,
50}, {11, 50}, {16, 42}, {20, 46}, {4, 63}, {8, 51}, {3, 62}, {27, 38}, {4, 57},
{7, 57}, {29, 35}, {10, 53}, {95, 96}, {14, 49}, {15, 79}, {16, 81}, {12, 79},
{24, 91}, {14, 77}, {1, 68}, {22, 80}, {25, 95}, {1, 73}, {30, 86}, {28, 84},
{24, 80}, {15, 69}, {8, 68}, {18, 94}, {8, 69}, {31, 82}, {23, 90}, {13, 64},
{7, 72}, {30, 78}, {22, 71}, {23, 70}, {2, 80}, {20, 70}, {5, 86}, {51, 96}, {1,
85}, {13, 89}, {12, 88}, {21, 67}, {26, 76}, {9, 94}, {28, 75}, {11, 92}, {2,
91}, {19, 73}, {17, 77}, {25, 69}, {18, 78}, {21, 72}, {6, 88}, {17, 79}, {30,
65}, {43, 75}, {38, 71}, {39, 70}, {46, 79}, {59, 90}, {55, 84}, {63, 92}, {4,
96}, {32, 68}, {35, 71}, {58, 95}, {60, 89}, {55, 81}, {40, 64}, {32, 73}, {33,
72}, {51, 89}, {46, 69}, {62, 82}, {62, 83}, {56, 87}, {33, 80}, {39, 86}, {42,
91}, {45, 92}, {49, 67}, {52, 71}, {42, 94}, {59, 78}, {54, 65}, {61, 74}, {36,
93}, {59, 65}, {60, 70}, {34, 89}, {41, 82}, {41, 87}, {52, 74}, {61, 67}, {61,
66} }>;
(II) A more general form is to represent the graph as the orbit of {24, 25}
under the group generated by the following permutations:
a: (2, 54)(3, 17)(4, 5)(7, 47)(8, 64)(9, 85)(10, 46)(11, 70)(12, 26)(13, 51)(14,
57)(15, 45)(16, 78)(18, 42)(19, 96)(20, 50)(21, 49)(22, 59)(23, 38)(24, 75)(25,
43)(27, 90)(28, 91)(29, 83)(30, 33)(31, 77)(34, 60)(35, 95)(39, 92)(40, 69)(41,
88)(48, 72)(52, 62)(53, 79)(56, 93)(58, 71)(61, 76)(63, 86)(65, 80)(68, 73)(74,
82)(81, 84) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 30)(3, 63)(4, 62)(5, 52)(6, 37)(7, 41)(8, 90)(9, 73)(10, 11)(12, 48)(13,
56)(14, 74)(16, 28)(17, 86)(18, 42)(19, 29)(20, 60)(21, 76)(22, 75)(23, 69)(24,
59)(25, 58)(26, 72)(27, 64)(32, 94)(33, 54)(34, 50)(36, 89)(38, 40)(39, 79)(43,
71)(44, 87)(46, 70)(47, 88)(49, 61)(51, 93)(53, 92)(55, 66)(57, 82)(65, 80)(68,
85)(78, 91)(81, 84)(83, 96)
c: (1, 48)(3, 10)(4, 20)(5, 18)(6, 63)(7, 93)(8, 15)(9, 49)(11, 82)(12, 80)(13,
59)(14, 94)(16, 74)(17, 91)(19, 78)(21, 56)(22, 61)(23, 51)(24, 79)(25, 46)(26,
45)(27, 67)(28, 43)(29, 55)(30, 73)(31, 50)(32, 86)(33, 88)(34, 62)(35, 84)(36,
57)(37, 83)(38, 76)(39, 68)(40, 54)(41, 92)(42, 77)(44, 90)(47, 85)(52, 81)(58,
89)(60, 95)(64, 65)(66, 71)(70, 96)(72, 87)
d: (1, 36)(3, 65)(4, 39)(5, 92)(6, 32)(7, 47)(8, 46)(9, 56)(10, 64)(11, 19)(12,
91)(13, 34)(14, 72)(15, 25)(16, 74)(17, 80)(18, 41)(20, 68)(21, 49)(22, 52)(23,
95)(24, 79)(26, 28)(27, 29)(30, 31)(33, 77)(35, 38)(37, 44)(42, 88)(43, 45)(48,
57)(50, 73)(51, 60)(53, 75)(55, 67)(59, 62)(61, 81)(63, 86)(70, 96)(76, 84)(78,
82)(83, 90)(85, 93)(87, 94)
C4[ 96, 33 ]
96
-1 68 73 85 9
-2 12 80 91 17
-3 62 31 53 54
-4 57 25 63 96
-5 14 19 86 43
-6 88 50 41 20
-7 44 57 37 72
-8 24 68 69 51
-9 1 27 94 29
-10 34 50 40 53
-11 34 92 38 50
-12 88 2 79 61
-13 44 89 19 64
-14 77 47 5 49
-15 23 79 69 39
-16 22 33 81 42
-17 77 2 79 52
-18 78 28 94 32
-19 13 35 5 73
-20 46 36 70 6
-21 55 67 57 72
-22 80 16 27 71
-23 90 58 15 70
-24 25 80 91 8
-25 24 69 4 95
-26 41 53 54 76
-27 22 56 38 9
-28 18 84 75 54
-29 56 35 52 9
-30 78 48 86 65
-31 57 3 82 63
-32 68 18 73 42
-33 80 16 72 63
-34 11 89 37 10
-35 71 29 19 43
-36 56 93 50 20
-37 34 47 60 7
-38 11 45 27 71
-39 15 48 70 86
-40 45 64 10 43
-41 26 82 6 87
-42 91 16 94 32
-43 35 5 40 75
-44 13 47 7 51
-45 92 38 40 53
-46 79 69 60 20
-47 44 14 37 48
-48 47 49 39 30
-49 55 67 14 48
-50 11 36 6 10
-51 44 89 8 96
-52 71 17 29 74
-53 45 3 26 10
-54 3 26 28 65
-55 81 49 84 21
-56 36 27 29 87
-57 4 7 31 21
-58 23 59 62 95
-59 78 90 58 65
-60 89 46 37 70
-61 66 12 67 74
-62 3 58 82 83
-63 33 4 92 31
-64 13 40 73 75
-65 59 30 75 54
-66 81 61 84 76
-67 49 61 21 76
-68 1 8 96 32
-69 46 25 15 8
-70 23 60 39 20
-71 22 35 38 52
-72 33 92 7 21
-73 1 19 64 32
-74 77 88 61 52
-75 28 64 43 65
-76 66 67 26 82
-77 14 17 74 86
-78 59 18 84 30
-79 12 46 15 17
-80 22 33 2 24
-81 55 66 91 16
-82 62 41 31 76
-83 93 62 95 85
-84 55 66 78 28
-85 1 90 83 94
-86 77 5 39 30
-87 88 56 93 41
-88 12 6 74 87
-89 34 13 60 51
-90 23 59 93 85
-91 2 24 81 42
-92 11 45 72 63
-93 90 36 83 87
-94 18 85 9 42
-95 25 58 83 96
-96 68 4 51 95
0