[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 36 ] =
UG(ATD[96,11]).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {1, 3}, {93, 95}, {92, 94}, {1, 2}, {3, 7}, {1, 4}, {8, 13}, {3,
6}, {2, 4}, {1, 6}, {8, 15}, {2, 5}, {32, 40}, {4, 13}, {87, 94}, {54, 63}, {16,
25}, {7, 14}, {37, 44}, {2, 9}, {87, 92}, {7, 12}, {50, 57}, {4, 8}, {19, 31},
{18, 30}, {17, 29}, {16, 28}, {5, 9}, {6, 11}, {82, 95}, {80, 94}, {3, 12}, {84,
91}, {5, 10}, {7, 23}, {79, 95}, {9, 25}, {8, 24}, {72, 89}, {76, 93}, {47, 61},
{79, 93}, {67, 81}, {64, 82}, {40, 59}, {5, 17}, {78, 90}, {69, 81}, {67, 87},
{66, 86}, {15, 27}, {14, 26}, {6, 18}, {33, 53}, {34, 54}, {35, 55}, {10, 31},
{75, 94}, {71, 82}, {64, 85}, {39, 50}, {41, 60}, {15, 24}, {79, 88}, {65, 86},
{9, 16}, {66, 91}, {14, 23}, {12, 21}, {11, 18}, {10, 19}, {36, 62}, {70, 92},
{37, 63}, {10, 17}, {75, 80}, {13, 22}, {36, 56}, {73, 85}, {70, 90}, {69, 89},
{68, 88}, {39, 58}, {35, 61}, {77, 83}, {11, 20}, {64, 95}, {38, 57}, {24, 59},
{14, 42}, {19, 55}, {15, 43}, {29, 57}, {25, 60}, {72, 96}, {11, 32}, {27, 48},
{31, 52}, {20, 56}, {12, 33}, {28, 49}, {23, 58}, {30, 51}, {13, 34}, {22, 57},
{29, 50}, {19, 35}, {28, 44}, {27, 43}, {26, 42}, {25, 41}, {24, 40}, {23, 39},
{22, 38}, {21, 37}, {20, 36}, {29, 45}, {30, 46}, {20, 32}, {84, 96}, {22, 34},
{21, 33}, {26, 47}, {21, 44}, {89, 96}, {91, 96}, {16, 44}, {18, 46}, {17, 45},
{27, 72}, {30, 74}, {31, 75}, {28, 73}, {26, 71}, {32, 65}, {58, 91}, {37, 68},
{47, 78}, {52, 86}, {53, 81}, {38, 64}, {54, 80}, {45, 69}, {46, 70}, {47, 71},
{40, 65}, {42, 67}, {48, 90}, {62, 84}, {59, 81}, {55, 93}, {41, 66}, {51, 88},
{33, 76}, {62, 83}, {56, 85}, {39, 74}, {49, 92}, {60, 82}, {61, 83}, {34, 77},
{63, 80}, {43, 68}, {35, 83}, {36, 84}, {53, 69}, {56, 73}, {38, 85}, {62, 77},
{61, 78}, {43, 88}, {45, 89}, {46, 90}, {52, 65}, {49, 70}, {48, 72}, {59, 67},
{58, 66}, {49, 73}, {50, 74}, {51, 74}, {53, 76}, {54, 77}, {63, 68}, {60, 71},
{55, 76}, {51, 79}, {42, 87}, {48, 78}, {41, 86}, {52, 75} }>;
(II) A more general form is to represent the graph as the orbit of {1, 3}
under the group generated by the following permutations:
a: (2, 3)(4, 6)(5, 7)(8, 11)(9, 12)(10, 14)(13, 18)(15, 20)(16, 21)(17, 23)(19,
26)(22, 30)(24, 32)(25, 33)(27, 36)(28, 37)(29, 39)(31, 42)(34, 46)(35, 47)(38,
51)(41, 53)(43, 56)(45, 58)(48, 62)(49, 63)(52, 67)(54, 70)(55, 71)(57, 74)(59,
65)(60, 76)(64, 79)(66, 69)(68, 73)(72, 84)(75, 87)(77, 90)(78, 83)(80, 92)(81,
86)(82, 93)(85, 88)(89, 91) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 6)(5, 13)(7, 18)(8, 9)(10, 34)(11, 12)(14, 46)(15, 25)(16, 24)(17,
22)(19, 77)(20, 33)(21, 32)(23, 30)(26, 90)(27, 60)(28, 59)(29, 57)(31, 54)(35,
83)(36, 76)(37, 65)(38, 45)(39, 74)(40, 44)(41, 43)(42, 70)(47, 78)(48, 71)(49,
67)(51, 58)(52, 63)(53, 56)(55, 62)(64, 89)(66, 88)(68, 86)(69, 85)(72, 82)(73,
81)(75, 80)(79, 91)(84, 93)(87, 92)(95, 96)
c: (1, 2, 4)(3, 5, 8)(6, 9, 13)(7, 10, 15)(11, 16, 22)(12, 17, 24)(14, 19,
27)(18, 25, 34)(20, 28, 38)(21, 29, 40)(23, 31, 43)(26, 35, 48)(30, 41, 54)(32,
44, 57)(33, 45, 59)(36, 49, 64)(37, 50, 65)(39, 52, 68)(42, 55, 72)(46, 60,
77)(47, 61, 78)(51, 66, 80)(53, 69, 81)(56, 73, 85)(58, 75, 88)(62, 70, 82)(63,
74, 86)(67, 76, 89)(71, 83, 90)(79, 91, 94)(84, 92, 95)(87, 93, 96)
C4[ 96, 36 ]
96
-1 2 3 4 6
-2 1 4 5 9
-3 1 12 6 7
-4 1 2 13 8
-5 2 17 9 10
-6 11 1 3 18
-7 12 23 3 14
-8 13 24 4 15
-9 2 25 5 16
-10 5 17 19 31
-11 6 18 20 32
-12 33 3 7 21
-13 22 34 4 8
-14 23 26 7 42
-15 24 27 8 43
-16 44 25 28 9
-17 45 5 29 10
-18 11 46 6 30
-19 55 35 31 10
-20 11 56 36 32
-21 33 44 12 37
-22 34 13 57 38
-23 14 58 39 7
-24 15 59 40 8
-25 16 60 41 9
-26 14 47 71 42
-27 15 48 72 43
-28 44 16 49 73
-29 45 57 17 50
-30 46 18 51 74
-31 19 52 75 10
-32 11 40 20 65
-33 12 53 21 76
-34 22 77 13 54
-35 55 61 83 19
-36 56 62 84 20
-37 44 68 63 21
-38 22 57 85 64
-39 23 58 50 74
-40 24 59 32 65
-41 66 25 60 86
-42 67 14 26 87
-43 88 68 15 27
-44 37 16 28 21
-45 89 69 17 29
-46 90 70 18 30
-47 78 26 71 61
-48 78 90 27 72
-49 70 92 28 73
-50 57 39 29 74
-51 88 79 30 74
-52 31 75 86 65
-53 33 69 81 76
-54 77 34 80 63
-55 35 93 19 76
-56 36 73 85 20
-57 22 38 50 29
-58 66 23 91 39
-59 67 24 81 40
-60 25 71 82 41
-61 78 35 47 83
-62 77 36 83 84
-63 68 80 37 54
-64 38 82 95 85
-65 40 52 86 32
-66 58 91 41 86
-67 59 81 42 87
-68 88 37 63 43
-69 45 89 81 53
-70 46 90 92 49
-71 47 26 60 82
-72 89 48 27 96
-73 56 49 28 85
-74 39 50 51 30
-75 80 94 52 31
-76 33 55 93 53
-77 34 83 62 54
-78 90 47 48 61
-79 88 93 51 95
-80 94 63 75 54
-81 67 69 59 53
-82 60 71 95 64
-83 77 35 61 62
-84 36 91 62 96
-85 56 38 73 64
-86 66 41 52 65
-87 67 92 94 42
-88 68 79 51 43
-89 45 69 72 96
-90 78 46 48 70
-91 66 58 84 96
-92 70 49 94 87
-93 55 79 95 76
-94 80 92 75 87
-95 79 82 93 64
-96 89 91 72 84
0