[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 38 ] =
UG(ATD[96,48]).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {14, 15}, {30, 31}, {1, 3}, {93, 95}, {33, 35}, {53, 55}, {1, 2},
{92, 95}, {89, 90}, {77, 78}, {28, 31}, {4, 7}, {33, 34}, {90, 94}, {3, 6}, {91,
94}, {88, 93}, {81, 84}, {66, 71}, {56, 61}, {41, 44}, {2, 4}, {66, 68}, {56,
62}, {34, 36}, {2, 5}, {18, 21}, {41, 46}, {49, 54}, {5, 13}, {84, 92}, {83,
91}, {82, 90}, {80, 88}, {7, 15}, {6, 14}, {16, 25}, {85, 92}, {39, 45}, {87,
93}, {3, 8}, {65, 74}, {64, 75}, {7, 12}, {35, 40}, {50, 57}, {52, 63}, {69,
73}, {4, 9}, {86, 91}, {69, 72}, {65, 76}, {19, 30}, {17, 28}, {6, 11}, {39,
42}, {5, 10}, {23, 24}, {18, 29}, {53, 58}, {64, 81}, {13, 31}, {75, 89}, {71,
85}, {70, 84}, {67, 81}, {36, 54}, {38, 52}, {41, 59}, {44, 62}, {45, 63}, {32,
51}, {67, 80}, {42, 57}, {12, 24}, {15, 27}, {14, 26}, {13, 25}, {38, 50}, {1,
20}, {70, 83}, {32, 53}, {40, 61}, {34, 52}, {79, 89}, {68, 82}, {37, 51}, {42,
60}, {44, 58}, {79, 88}, {8, 16}, {74, 82}, {12, 20}, {11, 19}, {10, 18}, {9,
17}, {35, 59}, {36, 60}, {76, 85}, {43, 49}, {76, 86}, {43, 48}, {8, 21}, {78,
83}, {77, 80}, {74, 87}, {11, 22}, {10, 23}, {37, 56}, {72, 86}, {73, 87}, {1,
30}, {9, 22}, {40, 55}, {66, 96}, {27, 48}, {29, 49}, {30, 50}, {77, 96}, {2,
45}, {15, 32}, {19, 35}, {29, 45}, {28, 44}, {24, 40}, {20, 36}, {16, 33}, {27,
42}, {23, 38}, {22, 39}, {18, 32}, {25, 43}, {3, 48}, {28, 47}, {26, 41}, {22,
37}, {17, 34}, {24, 47}, {5, 61}, {6, 62}, {20, 46}, {21, 46}, {25, 37}, {26,
38}, {4, 58}, {94, 96}, {8, 55}, {95, 96}, {7, 71}, {9, 72}, {27, 90}, {10, 73},
{11, 78}, {21, 80}, {17, 84}, {19, 85}, {29, 91}, {31, 88}, {13, 68}, {26, 86},
{23, 89}, {16, 75}, {12, 83}, {14, 81}, {56, 94}, {53, 95}, {47, 66}, {47, 64},
{57, 73}, {63, 79}, {58, 74}, {48, 65}, {62, 79}, {61, 76}, {55, 70}, {50, 67},
{49, 67}, {60, 78}, {54, 68}, {51, 64}, {52, 65}, {33, 87}, {59, 77}, {51, 69},
{43, 92}, {60, 75}, {63, 70}, {39, 93}, {46, 82}, {54, 72}, {59, 69}, {57, 71}
}>;
(II) A more general form is to represent the graph as the orbit of {14, 15}
under the group generated by the following permutations:
a: (1, 2, 45, 63, 52, 65, 48, 3)(4, 39, 79, 38, 76, 43, 8, 20)(5, 29, 70, 34,
74, 27, 6, 30)(7, 22, 88, 23, 86, 92, 16, 46)(9, 93, 89, 26, 85, 25, 21, 12)(10,
91, 84, 33, 82, 15, 11, 31)(13, 18, 83, 17, 87, 90, 14, 19)(24, 72, 95, 75, 41,
71, 37, 80)(28, 73, 94, 81, 35, 68, 32, 78)(36, 58, 42, 62, 50, 61, 49, 55)(40,
54, 53, 60, 44, 57, 56, 67)(47, 69, 96, 64, 59, 66, 51, 77) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 30, 3, 20)(4, 31, 6, 46)(5, 19, 8, 12)(7, 13, 11, 21)(9, 88, 14, 82)(10,
85, 16, 83)(15, 68, 22, 80)(17, 79, 26, 74)(18, 71, 25, 78)(23, 76, 33, 70)(24,
61, 35, 55)(27, 54, 39, 67)(28, 62, 41, 58)(29, 57, 43, 60)(32, 66, 37, 77)(34,
63, 38, 65)(36, 45, 50, 48)(42, 49)(47, 56, 59, 53)(51, 96)(64, 94, 69, 95)(72,
93, 81, 90)(73, 92, 75, 91)(84, 89, 86, 87)
c: (2, 3)(4, 8)(5, 6)(7, 21)(9, 16)(10, 14)(11, 13)(12, 46)(15, 18)(17, 33)(19,
31)(22, 25)(23, 26)(24, 41)(27, 29)(28, 35)(39, 43)(40, 44)(42, 49)(45, 48)(47,
59)(54, 60)(55, 58)(57, 67)(61, 62)(63, 65)(64, 69)(66, 77)(68, 78)(70, 74)(71,
80)(72, 75)(73, 81)(76, 79)(82, 83)(84, 87)(85, 88)(86, 89)(90, 91)(92, 93)
d: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 22)(17, 26)(18,
25)(20, 30)(23, 33)(24, 35)(27, 39)(28, 41)(29, 43)(31, 46)(32, 37)(34, 38)(36,
50)(45, 48)(47, 59)(53, 56)(54, 67)(55, 61)(57, 60)(58, 62)(63, 65)(64, 69)(66,
77)(68, 80)(70, 76)(71, 78)(72, 81)(73, 75)(74, 79)(82, 88)(83, 85)(84, 86)(87,
89)(90, 93)(91, 92)(94, 95)
C4[ 96, 38 ]
96
-1 2 3 30 20
-2 1 45 4 5
-3 1 48 6 8
-4 2 58 7 9
-5 2 13 61 10
-6 11 3 14 62
-7 12 4 15 71
-8 55 3 16 21
-9 22 4 17 72
-10 23 5 18 73
-11 22 78 6 19
-12 24 83 7 20
-13 68 25 5 31
-14 15 26 81 6
-15 14 27 7 32
-16 33 25 8 75
-17 34 28 84 9
-18 29 10 21 32
-19 11 35 30 85
-20 1 12 46 36
-21 46 80 18 8
-22 11 37 39 9
-23 89 24 38 10
-24 12 23 47 40
-25 13 37 16 43
-26 14 38 41 86
-27 90 15 48 42
-28 44 47 17 31
-29 45 91 49 18
-30 1 50 19 31
-31 88 13 28 30
-32 15 18 51 53
-33 34 35 16 87
-34 33 36 17 52
-35 33 59 40 19
-36 34 60 20 54
-37 22 56 25 51
-38 23 26 50 52
-39 22 45 93 42
-40 55 24 35 61
-41 44 46 26 59
-42 57 27 60 39
-43 25 48 92 49
-44 58 28 62 41
-45 2 39 29 63
-46 82 41 20 21
-47 66 24 28 64
-48 3 27 43 65
-49 67 29 43 54
-50 67 57 38 30
-51 69 37 64 32
-52 34 38 63 65
-53 55 58 95 32
-54 68 36 49 72
-55 70 40 8 53
-56 37 61 94 62
-57 71 50 73 42
-58 44 4 74 53
-59 77 35 69 41
-60 78 36 42 75
-61 56 5 40 76
-62 44 56 79 6
-63 45 79 70 52
-64 47 81 51 75
-65 48 52 74 76
-66 68 47 71 96
-67 80 81 49 50
-68 66 13 82 54
-69 59 72 51 73
-70 55 83 84 63
-71 66 57 7 85
-72 69 9 86 54
-73 57 69 10 87
-74 58 82 65 87
-75 89 16 60 64
-76 61 85 86 65
-77 78 80 59 96
-78 11 77 60 83
-79 88 89 62 63
-80 77 88 67 21
-81 67 14 84 64
-82 46 68 90 74
-83 12 78 91 70
-84 70 81 92 17
-85 92 71 19 76
-86 91 26 72 76
-87 33 93 73 74
-88 79 80 93 31
-89 23 79 90 75
-90 89 27 82 94
-91 83 94 29 86
-92 84 95 85 43
-93 88 39 95 87
-94 56 90 91 96
-95 92 93 96 53
-96 66 77 94 95
0