[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 96, 38 ]. See Glossary for some
detail.
UG(ATD[ 96, 48]) = UG(Rmap(192, 9) { 6, 4| 8}_ 12) = MG(Rmap( 96, 16) {
6, 6| 6}_ 8)
= DG(Rmap( 96,180) { 6, 8| 4}_ 6) = MG(Rmap( 96,190) { 8, 12| 4}_ 12) =
DG(Rmap( 96,194) { 12, 8| 4}_ 12)
= AT[ 96, 7]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 1 | 0 | - | - | - | - | 0 |
| 2 | 0 11 | - | - | 0 | 0 | - | - | - |
| 3 | 0 | - | - | - | 2 6 | - | 0 | - |
| 4 | - | 0 | - | - | - | 0 | - | 5 7 |
| 5 | - | 0 | 6 10 | - | - | 2 | - | - |
| 6 | - | - | - | 0 | 10 | - | 2 3 | - |
| 7 | - | - | 0 | - | - | 9 10 | - | 10 |
| 8 | 0 | - | - | 5 7 | - | - | 2 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 11 | 0 | - | - | 0 | - | - | - |
| 2 | 0 | - | 0 | 0 | 7 | - | - | - |
| 3 | - | 0 | - | - | 10 | 0 4 | - | - |
| 4 | - | 0 | - | - | - | 10 | 0 | 0 |
| 5 | 0 | 5 | 2 | - | - | - | 7 | - |
| 6 | - | - | 0 8 | 2 | - | - | 11 | - |
| 7 | - | - | - | 0 | 5 | 1 | - | 5 |
| 8 | - | - | - | 0 | - | - | 7 | 1 11 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | - | - | - | - | - | 0 | 0 | - | - |
| 2 | 0 | - | 1 | 0 | - | - | - | 0 | - | - | - | - |
| 3 | 0 | 7 | - | - | - | 0 | - | 4 | - | - | - | - |
| 4 | - | 0 | - | - | 0 | 5 | 0 | - | - | - | - | - |
| 5 | - | - | - | 0 | - | 6 | - | - | 3 | 7 | - | - |
| 6 | - | - | 0 | 3 | 2 | - | 6 | - | - | - | - | - |
| 7 | - | - | - | 0 | - | 2 | - | - | - | - | 0 | 0 |
| 8 | - | 0 | 4 | - | - | - | - | - | - | - | 5 | 1 |
| 9 | 0 | - | - | - | 5 | - | - | - | 3 5 | - | - | - |
| 10 | 0 | - | - | - | 1 | - | - | - | - | - | 2 4 | - |
| 11 | - | - | - | - | - | - | 0 | 3 | - | 4 6 | - | - |
| 12 | - | - | - | - | - | - | 0 | 7 | - | - | - | 1 7 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 7 | 0 | 0 | - | - | - | - | - | - | - | - | - |
| 2 | 0 | - | - | 1 | 1 | - | - | - | - | 1 | - | - |
| 3 | 0 | - | - | - | - | 1 | 1 | - | - | 5 | - | - |
| 4 | - | 7 | - | - | 1 | 3 | - | 0 | - | - | - | - |
| 5 | - | 7 | - | 7 | - | - | 5 | 4 | - | - | - | - |
| 6 | - | - | 7 | 5 | - | - | 7 | - | 0 | - | - | - |
| 7 | - | - | 7 | - | 3 | 1 | - | - | 4 | - | - | - |
| 8 | - | - | - | 0 | 4 | - | - | - | - | - | 3 | 3 |
| 9 | - | - | - | - | - | 0 | 4 | - | - | - | 3 | 7 |
| 10 | - | 7 | 3 | - | - | - | - | - | - | - | 4 6 | - |
| 11 | - | - | - | - | - | - | - | 5 | 5 | 2 4 | - | - |
| 12 | - | - | - | - | - | - | - | 5 | 1 | - | - | 3 5 |