C4graphGraph forms for C4 [ 96, 41 ] = XI(Rmap(48,7){4,6|4}_12)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 41 ] = XI(Rmap(48,7){4,6|4}_12).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {44, 60}, {37, 55}, {40, 60}, {34, 52}, {32, 55}, {37, 61}, {36, 62}, {34, 57}, {36, 56}, {17, 49}, {16, 50}, {17, 51}, {24, 63}, {28, 59}, {31, 56}, {20, 61}, {23, 62}, {16, 58}, {25, 50}, {24, 52}, {25, 53}, {22, 59}, {1, 49}, {15, 63}, {14, 62}, {13, 61}, {12, 60}, {10, 58}, {9, 57}, {8, 56}, {3, 50}, {7, 54}, {5, 52}, {1, 51}, {5, 55}, {4, 54}, {1, 50}, {8, 59}, {6, 53}, {2, 49}, {1, 53}, {7, 51}, {3, 55}, {2, 54}, {2, 52}, {15, 57}, {9, 63}, {4, 51}, {3, 58}, {4, 62}, {11, 49}, {5, 63}, {2, 57}, {7, 60}, {4, 56}, {6, 58}, {6, 59}, {11, 54}, {3, 61}, {10, 53}, {23, 87}, {24, 88}, {26, 91}, {6, 68}, {7, 69}, {29, 95}, {8, 75}, {12, 79}, {20, 80}, {25, 93}, {9, 76}, {37, 96}, {17, 84}, {11, 78}, {30, 91}, {5, 67}, {23, 81}, {29, 91}, {31, 89}, {10, 77}, {15, 72}, {14, 70}, {16, 88}, {9, 64}, {19, 90}, {11, 66}, {27, 82}, {13, 71}, {24, 82}, {25, 83}, {26, 80}, {10, 65}, {20, 95}, {18, 89}, {21, 94}, {26, 81}, {30, 85}, {12, 64}, {18, 94}, {27, 86}, {45, 96}, {8, 70}, {46, 96}, {14, 64}, {13, 67}, {30, 80}, {19, 66}, {21, 68}, {23, 70}, {21, 71}, {26, 72}, {27, 73}, {30, 76}, {31, 77}, {18, 65}, {19, 64}, {22, 69}, {18, 71}, {28, 74}, {29, 75}, {20, 67}, {15, 87}, {28, 68}, {12, 85}, {16, 73}, {22, 79}, {29, 68}, {31, 70}, {13, 86}, {17, 74}, {14, 85}, {27, 71}, {22, 75}, {21, 75}, {19, 76}, {47, 78}, {42, 72}, {32, 67}, {48, 83}, {46, 77}, {33, 69}, {48, 84}, {46, 74}, {45, 73}, {40, 79}, {41, 78}, {42, 66}, {44, 69}, {35, 73}, {43, 65}, {38, 76}, {33, 77}, {47, 66}, {48, 93}, {32, 78}, {33, 79}, {39, 72}, {46, 65}, {38, 86}, {44, 92}, {43, 91}, {42, 90}, {35, 82}, {41, 88}, {39, 86}, {37, 84}, {43, 89}, {47, 93}, {35, 80}, {47, 92}, {41, 90}, {38, 85}, {43, 95}, {45, 88}, {39, 81}, {36, 83}, {33, 89}, {38, 94}, {36, 92}, {39, 94}, {45, 84}, {40, 81}, {32, 90}, {48, 74}, {41, 82}, {28, 96}, {35, 95}, {42, 87}, {34, 92}, {34, 93}, {44, 83}, {40, 87} }>;

(II) A more general form is to represent the graph as the orbit of {44, 60} under the group generated by the following permutations:

a: (1, 2)(3, 5)(6, 9)(8, 14)(10, 15)(11, 17)(12, 22)(13, 20)(16, 24)(18, 26)(19, 28)(21, 30)(23, 31)(25, 34)(27, 35)(29, 38)(32, 37)(33, 40)(39, 43)(41, 45)(42, 46)(47, 48)(50, 52)(51, 54)(53, 57)(56, 62)(58, 63)(59, 64)(60, 69)(61, 67)(65, 72)(66, 74)(68, 76)(71, 80)(73, 82)(75, 85)(77, 87)(78, 84)(81, 89)(83, 92)(86, 95)(90, 96)(91, 94)
b: (6, 10)(8, 31)(18, 21)(22, 33)(28, 46)(29, 43)(59, 77)(65, 68)(75, 89)
c: (2, 7, 11, 4)(3, 6, 16, 10)(5, 22, 41, 31)(8, 24, 33, 32)(9, 12, 19, 14)(13, 21, 27, 18)(15, 40, 42, 23)(20, 29, 35, 43)(28, 45, 46, 37)(34, 44, 47, 36)(49, 51)(50, 53)(52, 69, 78, 56)(55, 59, 88, 77)(57, 60, 66, 62)(61, 68, 73, 65)(63, 79, 90, 70)(67, 75, 82, 89)(72, 81)(74, 84)(76, 85)(80, 91)(83, 93)(86, 94)
d: (6, 10)(8, 31)(13, 20)(18, 29)(21, 43)(22, 33)(26, 39)(27, 35)(28, 46)(30, 38)(59, 77)(65, 68)(71, 95)(75, 89)(80, 86)(91, 94)
e: (2, 3)(4, 6)(7, 10)(9, 13)(11, 16)(12, 18)(14, 21)(15, 20)(17, 25)(19, 27)(22, 31)(23, 29)(24, 32)(28, 36)(30, 39)(34, 37)(35, 42)(40, 43)(44, 46)(45, 47)(49, 50)(51, 53)(52, 55)(54, 58)(56, 59)(57, 61)(60, 65)(62, 68)(63, 67)(64, 71)(66, 73)(69, 77)(70, 75)(72, 80)(74, 83)(76, 86)(78, 88)(79, 89)(81, 91)(82, 90)(84, 93)(85, 94)(87, 95)(92, 96)
f: (4, 7)(8, 22)(12, 14)(23, 40)(31, 33)(36, 44)(56, 69)(60, 62)(70, 79)
g: (3, 16)(5, 24)(13, 27)(20, 35)(32, 41)(37, 45)(55, 88)(61, 73)(67, 82)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 41 ]
96
-1 49 50 51 53
-2 57 49 52 54
-3 55 58 50 61
-4 56 51 62 54
-5 55 67 52 63
-6 68 58 59 53
-7 69 60 51 54
-8 56 59 70 75
-9 57 63 64 76
-10 77 58 53 65
-11 66 78 49 54
-12 79 60 85 64
-13 67 71 61 86
-14 70 62 85 64
-15 57 72 63 87
-16 88 58 50 73
-17 49 51 84 74
-18 89 71 94 65
-19 66 90 64 76
-20 67 80 61 95
-21 68 71 94 75
-22 79 69 59 75
-23 70 81 62 87
-24 88 82 52 63
-25 93 50 83 53
-26 80 91 81 72
-27 71 82 73 86
-28 68 59 74 96
-29 68 91 95 75
-30 80 91 85 76
-31 77 56 89 70
-32 55 67 78 90
-33 77 89 79 69
-34 57 92 93 52
-35 80 82 73 95
-36 56 92 83 62
-37 55 61 84 96
-38 94 85 86 76
-39 81 72 94 86
-40 79 81 60 87
-41 88 78 90 82
-42 66 90 72 87
-43 89 91 95 65
-44 69 92 60 83
-45 88 73 84 96
-46 77 74 96 65
-47 66 78 92 93
-48 93 83 84 74
-49 11 1 2 17
-50 1 3 25 16
-51 1 4 17 7
-52 34 2 24 5
-53 1 25 6 10
-54 11 2 4 7
-55 3 37 5 32
-56 36 4 8 31
-57 34 2 15 9
-58 3 16 6 10
-59 22 6 28 8
-60 44 12 7 40
-61 13 3 37 20
-62 23 14 36 4
-63 24 15 5 9
-64 12 14 19 9
-65 46 18 10 43
-66 11 47 19 42
-67 13 5 20 32
-68 6 28 29 21
-69 22 33 44 7
-70 23 14 8 31
-71 13 27 18 21
-72 15 26 39 42
-73 45 35 16 27
-74 46 48 17 28
-75 22 29 8 21
-76 38 19 30 9
-77 33 46 31 10
-78 11 47 41 32
-79 22 33 12 40
-80 35 26 30 20
-81 23 26 39 40
-82 24 35 27 41
-83 44 25 36 48
-84 45 37 48 17
-85 12 14 38 30
-86 13 27 38 39
-87 23 15 40 42
-88 45 24 16 41
-89 33 18 31 43
-90 19 41 42 32
-91 26 29 30 43
-92 44 34 36 47
-93 34 25 47 48
-94 38 39 18 21
-95 35 29 20 43
-96 45 46 37 28
0

**************