[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 42 ] =
SDD(R_12(8,7)).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {48, 49}, {48, 50}, {48, 51}, {48, 53}, {36, 54}, {46, 60}, {42,
57}, {45, 62}, {44, 63}, {44, 56}, {47, 57}, {40, 63}, {45, 58}, {44, 59}, {32,
56}, {34, 59}, {47, 54}, {36, 61}, {45, 55}, {46, 53}, {47, 52}, {32, 60}, {35,
62}, {41, 52}, {41, 55}, {47, 49}, {44, 51}, {45, 50}, {28, 58}, {23, 61}, {1,
49}, {11, 59}, {10, 58}, {9, 57}, {8, 56}, {3, 50}, {14, 63}, {12, 61}, {7, 54},
{5, 52}, {1, 51}, {5, 55}, {1, 50}, {13, 62}, {6, 53}, {2, 49}, {1, 53}, {8,
60}, {3, 55}, {2, 54}, {2, 52}, {4, 51}, {3, 58}, {6, 60}, {7, 61}, {2, 57}, {4,
63}, {4, 56}, {3, 62}, {4, 59}, {13, 77}, {16, 80}, {15, 79}, {14, 78}, {22,
86}, {26, 90}, {6, 71}, {31, 94}, {15, 78}, {10, 75}, {8, 73}, {26, 88}, {27,
89}, {29, 95}, {30, 92}, {5, 70}, {18, 81}, {9, 74}, {27, 88}, {20, 80}, {5,
64}, {12, 73}, {7, 66}, {22, 83}, {24, 93}, {26, 95}, {30, 91}, {17, 87}, {6,
65}, {39, 96}, {16, 87}, {11, 76}, {22, 94}, {31, 86}, {9, 67}, {15, 69}, {21,
94}, {43, 96}, {27, 80}, {20, 88}, {21, 89}, {24, 84}, {29, 81}, {30, 82}, {31,
83}, {16, 93}, {18, 95}, {20, 89}, {23, 90}, {24, 85}, {10, 68}, {11, 69}, {25,
87}, {7, 72}, {15, 64}, {12, 67}, {28, 83}, {29, 77}, {16, 65}, {14, 92}, {20,
70}, {21, 71}, {24, 74}, {25, 75}, {17, 66}, {19, 64}, {23, 67}, {25, 76}, {26,
79}, {12, 90}, {19, 69}, {18, 68}, {13, 91}, {28, 75}, {31, 72}, {13, 85}, {14,
86}, {28, 68}, {8, 81}, {10, 83}, {29, 68}, {17, 75}, {9, 82}, {25, 66}, {19,
79}, {17, 76}, {19, 78}, {27, 70}, {22, 72}, {23, 73}, {11, 84}, {18, 77}, {42,
74}, {37, 65}, {36, 66}, {40, 78}, {34, 69}, {32, 73}, {46, 71}, {42, 67}, {41,
64}, {38, 79}, {33, 74}, {36, 72}, {43, 71}, {34, 76}, {35, 77}, {41, 70}, {46,
65}, {32, 81}, {37, 87}, {43, 89}, {33, 85}, {40, 92}, {21, 96}, {43, 94}, {39,
82}, {37, 80}, {33, 84}, {34, 84}, {35, 85}, {35, 91}, {42, 82}, {37, 93}, {38,
95}, {39, 92}, {33, 93}, {39, 91}, {38, 90}, {30, 96}, {40, 86}, {38, 88}
}>;
(II) A more general form is to represent the graph as the orbit of {48, 49}
under the group generated by the following permutations:
a: (11, 34) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (26, 38)
c: (4, 44)
d: (2, 47)
e: (3, 45)
f: (6, 46)
g: (15, 19)
h: (7, 9)(10, 13)(17, 24)(22, 30)(25, 33)(28, 35)(31, 39)(36, 42)(54, 57)(58,
62)(61, 67)(66, 74)(68, 77)(72, 82)(75, 85)(76, 84)(83, 91)(86, 92)(87, 93)(94,
96)
m: (1, 2)(3, 5)(4, 7)(6, 9)(8, 12)(10, 15)(11, 17)(13, 20)(14, 22)(16, 24)(18,
26)(19, 28)(21, 30)(23, 32)(25, 34)(27, 35)(29, 38)(31, 40)(33, 37)(36, 44)(39,
43)(41, 45)(42, 46)(47, 48)(50, 52)(51, 54)(53, 57)(56, 61)(58, 64)(59, 66)(60,
67)(62, 70)(63, 72)(65, 74)(68, 79)(69, 75)(71, 82)(77, 88)(78, 83)(80, 85)(81,
90)(84, 87)(89, 91)(92, 94)
n1: (13, 35)
a1: (7, 36)
b1: (30, 39)
c1: (24, 33)
d1: (4, 6)(11, 16)(14, 21)(15, 20)(19, 27)(34, 37)(40, 43)(44, 46)(51, 53)(56,
60)(59, 65)(63, 71)(64, 70)(69, 80)(76, 87)(78, 89)(79, 88)(84, 93)(86, 94)(92,
96)
e1: (16, 37)
f1: (21, 43)
g1: (11, 14)(16, 21)(17, 22)(24, 30)(25, 31)(33, 39)(34, 40)(37, 43)(59, 63)(65,
71)(66, 72)(69, 78)(74, 82)(75, 83)(76, 86)(80, 89)(84, 92)(85, 91)(87, 94)(93,
96)
h1: (9, 42)
m1: (10, 28)
n2: (14, 40)
a2: (18, 29)
b2: (2, 4)(3, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 15)(13, 21)(18, 20)(19, 23)(22,
24)(27, 29)(28, 37)(31, 33)(32, 41)(34, 36)(35, 43)(40, 42)(44, 47)(45, 46)(49,
51)(50, 53)(52, 56)(54, 59)(55, 60)(57, 63)(58, 65)(61, 69)(62, 71)(64, 73)(66,
76)(67, 78)(68, 80)(70, 81)(72, 84)(74, 86)(75, 87)(77, 89)(79, 90)(82, 92)(83,
93)(85, 94)(88, 95)(91, 96)
c2: (20, 27)
d2: (8, 32)
e2: (22, 31)
f2: (5, 41)
C4[ 96, 42 ]
96
-1 49 50 51 53
-2 57 49 52 54
-3 55 58 50 62
-4 56 59 51 63
-5 55 70 52 64
-6 60 71 53 65
-7 66 61 72 54
-8 56 81 60 73
-9 67 57 82 74
-10 68 58 83 75
-11 69 59 84 76
-12 67 90 61 73
-13 77 91 62 85
-14 78 92 63 86
-15 78 79 69 64
-16 80 93 65 87
-17 66 75 76 87
-18 77 68 81 95
-19 78 79 69 64
-20 88 89 80 70
-21 89 71 94 96
-22 72 83 94 86
-23 67 90 61 73
-24 93 84 74 85
-25 66 75 76 87
-26 88 79 90 95
-27 88 89 80 70
-28 68 58 83 75
-29 77 68 81 95
-30 91 92 82 96
-31 72 83 94 86
-32 56 81 60 73
-33 93 84 74 85
-34 69 59 84 76
-35 77 91 62 85
-36 66 61 72 54
-37 80 93 65 87
-38 88 79 90 95
-39 91 92 82 96
-40 78 92 63 86
-41 55 70 52 64
-42 67 57 82 74
-43 89 71 94 96
-44 56 59 51 63
-45 55 58 50 62
-46 60 71 53 65
-47 57 49 52 54
-48 49 50 51 53
-49 1 2 47 48
-50 1 45 3 48
-51 44 1 4 48
-52 2 47 5 41
-53 1 46 48 6
-54 2 36 47 7
-55 45 3 5 41
-56 44 4 8 32
-57 2 47 9 42
-58 45 3 28 10
-59 11 44 34 4
-60 46 6 8 32
-61 12 23 36 7
-62 45 13 35 3
-63 44 14 4 40
-64 15 5 19 41
-65 46 37 16 6
-66 25 36 17 7
-67 12 23 9 42
-68 28 18 29 10
-69 11 34 15 19
-70 5 27 41 20
-71 46 6 21 43
-72 22 36 7 31
-73 12 23 8 32
-74 33 24 9 42
-75 25 17 28 10
-76 11 34 25 17
-77 13 35 18 29
-78 14 15 40 19
-79 15 26 38 19
-80 37 16 27 20
-81 18 29 8 32
-82 39 30 9 42
-83 22 28 31 10
-84 11 33 34 24
-85 33 13 24 35
-86 22 14 40 31
-87 25 37 16 17
-88 26 27 38 20
-89 27 20 21 43
-90 12 23 26 38
-91 13 35 39 30
-92 14 39 40 30
-93 33 24 37 16
-94 22 31 21 43
-95 26 38 18 29
-96 39 30 21 43
0