[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 43 ] =
SDD(W(12,2)).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {18, 49}, {18, 54}, {18, 52}, {19, 53}, {25, 49}, {20, 62}, {25,
51}, {16, 59}, {18, 57}, {25, 50}, {19, 63}, {25, 53}, {16, 63}, {19, 60}, {1,
49}, {14, 62}, {13, 61}, {11, 59}, {10, 58}, {9, 57}, {8, 56}, {3, 50}, {15,
62}, {12, 61}, {7, 54}, {5, 52}, {1, 51}, {5, 55}, {1, 50}, {6, 53}, {2, 49},
{1, 53}, {15, 59}, {13, 57}, {11, 63}, {9, 61}, {8, 60}, {3, 55}, {2, 54}, {2,
52}, {12, 58}, {4, 51}, {15, 56}, {3, 58}, {6, 63}, {5, 60}, {4, 62}, {6, 60},
{2, 57}, {12, 55}, {4, 56}, {15, 51}, {10, 54}, {8, 52}, {5, 56}, {7, 58}, {3,
61}, {12, 50}, {4, 59}, {8, 55}, {7, 66}, {6, 65}, {14, 73}, {7, 64}, {10, 66},
{13, 69}, {14, 71}, {9, 67}, {42, 96}, {10, 64}, {26, 81}, {30, 85}, {9, 69},
{44, 96}, {11, 70}, {31, 82}, {28, 81}, {29, 80}, {30, 83}, {13, 67}, {46, 96},
{11, 68}, {31, 80}, {14, 65}, {29, 82}, {21, 69}, {48, 96}, {17, 64}, {17, 67},
{19, 65}, {23, 69}, {20, 71}, {26, 73}, {28, 79}, {30, 77}, {16, 68}, {24, 76},
{30, 74}, {31, 75}, {20, 65}, {22, 67}, {23, 66}, {26, 79}, {27, 78}, {28, 73},
{29, 72}, {16, 70}, {22, 64}, {24, 78}, {29, 75}, {21, 66}, {27, 76}, {31, 72},
{21, 77}, {17, 72}, {23, 77}, {28, 70}, {17, 74}, {22, 74}, {23, 75}, {24, 68},
{26, 70}, {27, 71}, {20, 73}, {21, 75}, {22, 72}, {24, 71}, {27, 68}, {32, 74},
{48, 90}, {36, 78}, {34, 78}, {35, 79}, {32, 77}, {48, 93}, {33, 76}, {33, 79},
{48, 94}, {35, 76}, {46, 94}, {47, 95}, {45, 92}, {45, 95}, {32, 83}, {47, 92},
{46, 93}, {44, 95}, {42, 89}, {40, 91}, {38, 85}, {36, 87}, {34, 81}, {38, 82},
{47, 91}, {46, 90}, {39, 83}, {32, 85}, {45, 88}, {44, 89}, {43, 94}, {42, 95},
{41, 92}, {40, 93}, {37, 80}, {36, 81}, {35, 86}, {34, 87}, {33, 84}, {37, 83},
{45, 91}, {33, 86}, {47, 88}, {43, 92}, {41, 94}, {39, 80}, {35, 84}, {40, 82},
{44, 86}, {34, 89}, {38, 93}, {42, 86}, {43, 87}, {36, 89}, {41, 84}, {40, 85},
{39, 90}, {38, 91}, {37, 88}, {41, 87}, {37, 90}, {43, 84}, {39, 88} }>;
(II) A more general form is to represent the graph as the orbit of {18, 49}
under the group generated by the following permutations:
a: (37, 38)(39, 40)(80, 82)(83, 85)(88, 91)(90, 93) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (30, 32)
c: (26, 28)
d: (41, 42)(43, 44)(84, 86)(87, 89)(92, 95)(94, 96)
e: (2, 4)(3, 6)(7, 11)(9, 14)(10, 16)(12, 19)(13, 20)(15, 18)(17, 24)(21,
26)(22, 27)(23, 28)(29, 33)(30, 34)(31, 35)(32, 36)(37, 41)(38, 42)(39, 43)(40,
44)(49, 51)(50, 53)(52, 56)(54, 59)(55, 60)(57, 62)(58, 63)(61, 65)(64, 68)(66,
70)(67, 71)(69, 73)(72, 76)(74, 78)(75, 79)(77, 81)(80, 84)(82, 86)(83, 87)(85,
89)(88, 92)(90, 94)(91, 95)(93, 96)
f: (3, 12)
g: (14, 20)
h: (21, 23)
m: (42, 44)
n1: (4, 6)(15, 19)(51, 53)(56, 60)(59, 63)(62, 65)
a1: (9, 13)
b1: (2, 3)(12, 18)(49, 50)(52, 55)(54, 58)(57, 61)
c1: (1, 2)(3, 5)(4, 7)(6, 9)(8, 12)(10, 15)(11, 17)(13, 19)(14, 21)(16, 22)(18,
25)(20, 23)(24, 29)(26, 30)(27, 31)(28, 32)(33, 37)(34, 38)(35, 39)(36, 40)(41,
45)(42, 46)(43, 47)(44, 48)(50, 52)(51, 54)(53, 57)(56, 58)(59, 64)(60, 61)(62,
66)(63, 67)(65, 69)(68, 72)(70, 74)(71, 75)(73, 77)(76, 80)(78, 82)(79, 83)(81,
85)(84, 88)(86, 90)(87, 91)(89, 93)(94, 95)
d1: (7, 9)(10, 13)(54, 57)(58, 61)(64, 67)(66, 69)
e1: (45, 46)(47, 48)(88, 90)(91, 93)(92, 94)(95, 96)
f1: (11, 14)(16, 20)(59, 62)(63, 65)(68, 71)(70, 73)
g1: (33, 34)(35, 36)(76, 78)(79, 81)(84, 87)(86, 89)
h1: (6, 19)
m1: (5, 8)
n2: (17, 21)(22, 23)(64, 66)(67, 69)(72, 75)(74, 77)
a2: (38, 40)
b2: (34, 36)
c2: (29, 30)(31, 32)(72, 74)(75, 77)(80, 83)(82, 85)
d2: (46, 48)
e2: (24, 26)(27, 28)(68, 70)(71, 73)(76, 79)(78, 81)
C4[ 96, 43 ]
96
-1 49 50 51 53
-2 57 49 52 54
-3 55 58 50 61
-4 56 59 51 62
-5 55 56 60 52
-6 60 63 53 65
-7 66 58 64 54
-8 55 56 60 52
-9 67 57 69 61
-10 66 58 64 54
-11 68 59 70 63
-12 55 58 50 61
-13 67 57 69 61
-14 71 62 73 65
-15 56 59 51 62
-16 68 59 70 63
-17 67 72 74 64
-18 57 49 52 54
-19 60 63 53 65
-20 71 62 73 65
-21 66 77 69 75
-22 67 72 74 64
-23 66 77 69 75
-24 78 68 71 76
-25 49 50 51 53
-26 79 70 81 73
-27 78 68 71 76
-28 79 70 81 73
-29 80 82 72 75
-30 77 83 74 85
-31 80 82 72 75
-32 77 83 74 85
-33 79 84 86 76
-34 78 89 81 87
-35 79 84 86 76
-36 78 89 81 87
-37 88 90 80 83
-38 91 82 93 85
-39 88 90 80 83
-40 91 82 93 85
-41 92 94 84 87
-42 89 95 96 86
-43 92 94 84 87
-44 89 95 96 86
-45 88 91 92 95
-46 90 93 94 96
-47 88 91 92 95
-48 90 93 94 96
-49 1 2 25 18
-50 1 12 3 25
-51 1 25 4 15
-52 2 5 18 8
-53 1 25 6 19
-54 2 7 18 10
-55 12 3 5 8
-56 4 15 5 8
-57 2 13 18 9
-58 12 3 7 10
-59 11 4 15 16
-60 5 6 8 19
-61 12 13 3 9
-62 14 4 15 20
-63 11 16 6 19
-64 22 17 7 10
-65 14 6 19 20
-66 23 7 10 21
-67 22 13 17 9
-68 11 24 16 27
-69 23 13 9 21
-70 11 26 16 28
-71 24 14 27 20
-72 22 17 29 31
-73 14 26 28 20
-74 22 17 30 32
-75 23 29 31 21
-76 33 24 35 27
-77 23 30 21 32
-78 34 24 36 27
-79 33 35 26 28
-80 37 39 29 31
-81 34 36 26 28
-82 38 29 40 31
-83 37 39 30 32
-84 33 35 41 43
-85 38 40 30 32
-86 33 44 35 42
-87 34 36 41 43
-88 45 47 37 39
-89 44 34 36 42
-90 46 37 48 39
-91 45 47 38 40
-92 45 47 41 43
-93 46 48 38 40
-94 46 48 41 43
-95 44 45 47 42
-96 44 46 48 42
0