[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 44 ] =
SDD(C_24(1,7)).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {35, 51}, {43, 59}, {39, 55}, {35, 50}, {35, 49}, {46, 60}, {36,
54}, {38, 53}, {41, 61}, {35, 54}, {42, 63}, {40, 61}, {38, 49}, {45, 58}, {41,
50}, {37, 56}, {38, 56}, {30, 63}, {22, 53}, {20, 51}, {24, 63}, {17, 57}, {22,
62}, {19, 58}, {20, 62}, {22, 60}, {23, 61}, {30, 52}, {16, 59}, {18, 60}, {21,
59}, {1, 49}, {9, 57}, {1, 51}, {6, 52}, {1, 50}, {8, 59}, {2, 49}, {3, 55},
{10, 62}, {13, 56}, {15, 58}, {4, 50}, {10, 60}, {5, 51}, {1, 54}, {14, 57}, {3,
52}, {2, 53}, {4, 61}, {6, 63}, {2, 56}, {3, 57}, {5, 62}, {12, 55}, {7, 58},
{11, 54}, {9, 52}, {9, 55}, {10, 53}, {4, 68}, {16, 80}, {8, 72}, {7, 71}, {6,
70}, {5, 69}, {29, 93}, {14, 79}, {25, 88}, {29, 92}, {31, 94}, {2, 64}, {16,
82}, {15, 77}, {3, 65}, {10, 73}, {25, 90}, {14, 74}, {24, 92}, {26, 94}, {31,
91}, {7, 66}, {17, 84}, {11, 78}, {26, 95}, {20, 82}, {27, 93}, {31, 89}, {12,
75}, {9, 65}, {18, 90}, {8, 65}, {16, 89}, {13, 68}, {28, 85}, {8, 67}, {23,
91}, {27, 86}, {28, 81}, {29, 80}, {30, 83}, {12, 66}, {46, 96}, {26, 84}, {7,
72}, {47, 96}, {19, 66}, {20, 69}, {27, 74}, {25, 75}, {11, 95}, {21, 65}, {19,
71}, {4, 81}, {6, 83}, {24, 77}, {21, 67}, {31, 73}, {5, 82}, {15, 88}, {24,
79}, {15, 87}, {30, 70}, {12, 85}, {23, 78}, {25, 64}, {26, 67}, {13, 87}, {14,
84}, {28, 70}, {29, 71}, {17, 74}, {19, 72}, {23, 76}, {11, 86}, {21, 72}, {13,
83}, {18, 76}, {17, 79}, {27, 69}, {22, 73}, {45, 77}, {37, 68}, {46, 76}, {33,
69}, {40, 76}, {39, 66}, {42, 79}, {38, 64}, {40, 78}, {32, 71}, {42, 77}, {48,
88}, {47, 70}, {36, 78}, {48, 90}, {33, 74}, {34, 73}, {39, 75}, {41, 68}, {44,
67}, {32, 80}, {48, 64}, {18, 96}, {44, 94}, {43, 89}, {39, 85}, {37, 87}, {36,
86}, {40, 91}, {44, 95}, {46, 90}, {45, 88}, {37, 83}, {42, 92}, {33, 86}, {41,
81}, {44, 84}, {34, 91}, {43, 82}, {45, 87}, {47, 85}, {34, 89}, {48, 75}, {43,
80}, {36, 95}, {28, 96}, {34, 94}, {33, 93}, {32, 92}, {32, 93}, {47, 81}
}>;
(II) A more general form is to represent the graph as the orbit of {35, 51}
under the group generated by the following permutations:
a: (7, 19) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (18, 46)
c: (13, 37)
d: (12, 39)
e: (2, 5)(4, 11)(6, 14)(8, 12)(13, 27)(15, 29)(16, 25)(17, 30)(18, 31)(20,
38)(21, 39)(26, 28)(32, 45)(33, 37)(34, 46)(36, 41)(43, 48)(44, 47)(49, 51)(50,
54)(52, 57)(53, 62)(55, 65)(56, 69)(58, 71)(59, 75)(60, 73)(61, 78)(63, 79)(64,
82)(66, 72)(67, 85)(68, 86)(70, 84)(74, 83)(76, 91)(77, 92)(80, 88)(81, 95)(87,
93)(89, 90)(94, 96)
f: (2, 38)
g: (11, 36)
h: (2, 4)(3, 7)(5, 11)(6, 15)(9, 19)(10, 23)(14, 29)(16, 26)(17, 32)(20, 36)(22,
40)(25, 28)(30, 45)(38, 41)(43, 44)(47, 48)(49, 50)(51, 54)(52, 58)(53, 61)(55,
66)(56, 68)(57, 71)(59, 67)(60, 76)(62, 78)(63, 77)(64, 81)(65, 72)(69, 86)(70,
88)(73, 91)(74, 93)(75, 85)(79, 92)(80, 84)(82, 95)(83, 87)(89, 94)(90, 96)
m: (25, 48)
n1: (26, 44)
a1: (5, 20)
b1: (15, 45)
c1: (3, 9)
d1: (29, 32)
e1: (14, 17)
f1: (28, 47)
g1: (31, 34)
h1: (1, 2, 13, 15, 24, 29, 27, 5)(3, 8, 26, 31, 23, 18, 28, 12)(4, 25, 6, 7, 14,
16, 11, 10)(9, 21, 44, 34, 40, 46, 47, 39)(17, 43, 36, 22, 41, 48, 30, 19)(20,
35, 38, 37, 45, 42, 32, 33)(49, 56, 87, 77, 92, 93, 69, 51)(50, 64, 83, 58, 79,
80, 86, 62)(52, 72, 84, 89, 78, 60, 81, 75)(53, 68, 88, 63, 71, 74, 82, 54)(55,
65, 67, 94, 91, 76, 96, 85)(57, 59, 95, 73, 61, 90, 70, 66)
m1: (16, 43)
n2: (23, 40)
a2: (10, 22)
b2: (8, 21)
c2: (24, 42)
d2: (4, 41)
e2: (27, 33)
C4[ 96, 44 ]
96
-1 49 50 51 54
-2 56 49 53 64
-3 55 57 52 65
-4 68 81 50 61
-5 69 82 51 62
-6 70 83 52 63
-7 66 58 71 72
-8 67 59 72 65
-9 55 57 52 65
-10 60 62 73 53
-11 78 95 86 54
-12 55 66 85 75
-13 56 68 83 87
-14 57 79 84 74
-15 77 88 58 87
-16 89 80 59 82
-17 57 79 84 74
-18 90 60 96 76
-19 66 58 71 72
-20 69 82 51 62
-21 67 59 72 65
-22 60 62 73 53
-23 78 91 61 76
-24 77 79 92 63
-25 88 90 64 75
-26 67 94 84 95
-27 69 93 74 86
-28 70 81 85 96
-29 80 92 71 93
-30 70 83 52 63
-31 89 91 94 73
-32 80 92 71 93
-33 69 93 74 86
-34 89 91 94 73
-35 49 50 51 54
-36 78 95 86 54
-37 56 68 83 87
-38 56 49 53 64
-39 55 66 85 75
-40 78 91 61 76
-41 68 81 50 61
-42 77 79 92 63
-43 89 80 59 82
-44 67 94 84 95
-45 77 88 58 87
-46 90 60 96 76
-47 70 81 85 96
-48 88 90 64 75
-49 1 2 35 38
-50 1 35 4 41
-51 1 35 5 20
-52 3 6 30 9
-53 22 2 38 10
-54 11 1 35 36
-55 12 3 39 9
-56 2 13 37 38
-57 3 14 17 9
-58 45 15 7 19
-59 16 8 21 43
-60 22 46 18 10
-61 23 4 40 41
-62 22 5 20 10
-63 24 6 30 42
-64 2 25 48 38
-65 3 8 9 21
-66 12 39 7 19
-67 44 26 8 21
-68 13 4 37 41
-69 33 5 27 20
-70 47 6 28 30
-71 7 29 19 32
-72 7 8 19 21
-73 22 34 31 10
-74 33 14 27 17
-75 12 25 48 39
-76 23 46 18 40
-77 45 24 15 42
-78 11 23 36 40
-79 24 14 17 42
-80 16 29 32 43
-81 47 4 28 41
-82 5 16 20 43
-83 13 37 6 30
-84 44 14 26 17
-85 12 47 28 39
-86 11 33 36 27
-87 45 13 15 37
-88 45 25 15 48
-89 34 16 31 43
-90 46 25 48 18
-91 23 34 40 31
-92 24 29 42 32
-93 33 27 29 32
-94 44 34 26 31
-95 11 44 36 26
-96 46 47 28 18
0