C4graphGraph forms for C4 [ 96, 45 ] = PL(CS(W(6,2)[6^4],0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 45 ] = PL(CS(W(6,2)[6^4],0)).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {37, 61}, {38, 61}, {22, 54}, {23, 55}, {30, 62}, {30, 63}, {29, 63}, {21, 54}, {29, 62}, {17, 53}, {21, 49}, {18, 54}, {24, 60}, {26, 63}, {25, 63}, {17, 54}, {18, 53}, {22, 49}, {19, 59}, {20, 60}, {16, 58}, {16, 59}, {23, 60}, {19, 60}, {20, 59}, {24, 55}, {1, 49}, {8, 56}, {2, 50}, {8, 57}, {11, 58}, {11, 57}, {1, 50}, {4, 55}, {2, 49}, {3, 55}, {15, 59}, {10, 62}, {6, 50}, {6, 51}, {15, 58}, {12, 57}, {11, 62}, {5, 51}, {12, 58}, {11, 61}, {5, 50}, {10, 61}, {13, 53}, {10, 51}, {13, 52}, {9, 51}, {14, 52}, {3, 56}, {14, 53}, {4, 56}, {9, 52}, {7, 57}, {10, 52}, {7, 56}, {28, 92}, {28, 93}, {33, 96}, {14, 76}, {16, 82}, {15, 77}, {14, 77}, {16, 83}, {15, 76}, {25, 93}, {36, 96}, {25, 92}, {37, 96}, {2, 74}, {40, 96}, {12, 68}, {3, 74}, {3, 73}, {20, 94}, {19, 89}, {18, 88}, {9, 67}, {2, 73}, {20, 95}, {19, 88}, {18, 89}, {4, 79}, {26, 86}, {27, 87}, {29, 81}, {9, 68}, {26, 87}, {27, 86}, {29, 80}, {1, 79}, {17, 95}, {12, 67}, {17, 94}, {6, 86}, {1, 80}, {7, 86}, {7, 85}, {21, 71}, {6, 85}, {8, 91}, {21, 70}, {4, 80}, {8, 92}, {30, 74}, {31, 75}, {30, 75}, {31, 74}, {22, 64}, {23, 65}, {22, 65}, {23, 64}, {5, 92}, {25, 64}, {28, 69}, {26, 64}, {28, 70}, {31, 69}, {31, 68}, {27, 70}, {5, 91}, {13, 83}, {24, 70}, {27, 69}, {13, 82}, {24, 71}, {40, 72}, {47, 79}, {46, 78}, {43, 72}, {45, 78}, {32, 68}, {48, 84}, {45, 73}, {44, 72}, {42, 78}, {39, 67}, {38, 66}, {32, 69}, {43, 78}, {43, 77}, {37, 66}, {46, 73}, {42, 77}, {41, 65}, {42, 66}, {34, 75}, {33, 75}, {40, 67}, {44, 71}, {42, 65}, {41, 66}, {43, 71}, {33, 76}, {48, 93}, {34, 76}, {48, 94}, {39, 72}, {32, 80}, {45, 93}, {32, 81}, {35, 82}, {35, 81}, {45, 94}, {36, 81}, {35, 85}, {46, 88}, {36, 82}, {34, 85}, {47, 88}, {40, 95}, {34, 90}, {47, 87}, {44, 84}, {35, 90}, {46, 87}, {33, 91}, {41, 83}, {37, 95}, {47, 84}, {38, 90}, {39, 90}, {41, 84}, {39, 89}, {36, 91}, {48, 79}, {44, 83}, {38, 89} }>;

(II) A more general form is to represent the graph as the orbit of {37, 61} under the group generated by the following permutations:

a: (2, 4)(5, 32, 6, 29)(7, 30, 8, 31)(9, 35, 10, 36)(11, 33, 12, 34)(14, 16)(17, 44, 18, 41)(19, 42, 20, 43)(21, 47, 22, 48)(23, 45, 24, 46)(25, 28, 27, 26)(37, 40, 39, 38)(49, 79)(50, 80)(51, 81)(52, 82)(53, 83)(54, 84)(55, 73)(56, 74)(57, 75)(58, 76)(59, 77)(60, 78)(61, 96, 67, 90)(62, 91, 68, 85)(63, 92, 69, 86)(64, 93, 70, 87)(65, 94, 71, 88)(66, 95, 72, 89)
b: (1, 2)(3, 4)(13, 14)(15, 16)(29, 30)(31, 32)(33, 36)(34, 35)(41, 42)(43, 44)(45, 48)(46, 47)(73, 79)(74, 80)(75, 81)(76, 82)(77, 83)(78, 84)
c: (1, 5, 9, 13, 17, 21)(2, 6, 10, 14, 18, 22)(3, 7, 11, 15, 19, 23)(4, 8, 12, 16, 20, 24)(25, 31, 35, 37, 43, 47)(26, 30, 34, 38, 42, 46)(27, 29, 33, 39, 41, 45)(28, 32, 36, 40, 44, 48)(49, 50, 51, 52, 53, 54)(55, 56, 57, 58, 59, 60)(61, 77, 88, 64, 74, 85)(62, 76, 89, 65, 73, 86)(63, 75, 90, 66, 78, 87)(67, 83, 94, 70, 80, 91)(68, 82, 95, 71, 79, 92)(69, 81, 96, 72, 84, 93)
d: (9, 10)(11, 12)(21, 22)(23, 24)(25, 28)(26, 27)(29, 32)(30, 31)(37, 40)(38, 39)(41, 44)(42, 43)(61, 67)(62, 68)(63, 69)(64, 70)(65, 71)(66, 72)
e: (5, 21)(6, 22)(7, 23)(8, 24)(9, 17)(10, 18)(11, 19)(12, 20)(25, 27)(29, 47)(30, 46)(31, 45)(32, 48)(33, 43)(34, 42)(35, 41)(36, 44)(37, 39)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61, 89)(62, 88)(63, 87)(64, 86)(65, 85)(66, 90)(67, 95)(68, 94)(69, 93)(70, 92)(71, 91)(72, 96)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)
f: (5, 6)(7, 8)(17, 18)(19, 20)(25, 26)(27, 28)(33, 34)(35, 36)(37, 38)(39, 40)(45, 46)(47, 48)(85, 91)(86, 92)(87, 93)(88, 94)(89, 95)(90, 96)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 45 ]
96
-1 79 80 49 50
-2 49 50 73 74
-3 55 56 73 74
-4 55 56 79 80
-5 91 92 50 51
-6 50 51 85 86
-7 56 57 85 86
-8 56 57 91 92
-9 67 68 51 52
-10 61 51 62 52
-11 57 58 61 62
-12 67 57 68 58
-13 82 83 52 53
-14 77 52 53 76
-15 77 58 59 76
-16 58 59 82 83
-17 94 95 53 54
-18 88 89 53 54
-19 88 89 59 60
-20 59 60 94 95
-21 70 49 71 54
-22 49 64 54 65
-23 55 60 64 65
-24 55 70 60 71
-25 92 93 63 64
-26 63 64 86 87
-27 69 70 86 87
-28 69 70 92 93
-29 80 81 62 63
-30 62 63 74 75
-31 68 69 74 75
-32 68 69 80 81
-33 91 96 75 76
-34 90 85 75 76
-35 90 81 82 85
-36 91 81 82 96
-37 66 61 95 96
-38 66 89 90 61
-39 67 89 90 72
-40 67 72 95 96
-41 66 83 84 65
-42 66 77 78 65
-43 77 78 71 72
-44 71 72 83 84
-45 78 93 94 73
-46 88 78 73 87
-47 88 79 84 87
-48 79 93 94 84
-49 22 1 2 21
-50 1 2 5 6
-51 5 6 9 10
-52 13 14 9 10
-53 13 14 17 18
-54 22 17 18 21
-55 23 24 3 4
-56 3 4 7 8
-57 11 12 7 8
-58 11 12 15 16
-59 15 16 19 20
-60 23 24 19 20
-61 11 37 38 10
-62 11 29 30 10
-63 25 26 29 30
-64 22 23 25 26
-65 22 23 41 42
-66 37 38 41 42
-67 12 39 40 9
-68 12 9 31 32
-69 27 28 31 32
-70 24 27 28 21
-71 44 24 21 43
-72 44 39 40 43
-73 45 2 46 3
-74 2 3 30 31
-75 33 34 30 31
-76 33 34 14 15
-77 14 15 42 43
-78 45 46 42 43
-79 1 47 4 48
-80 1 4 29 32
-81 35 36 29 32
-82 13 35 36 16
-83 44 13 16 41
-84 44 47 48 41
-85 34 35 6 7
-86 26 27 6 7
-87 46 47 26 27
-88 46 47 18 19
-89 38 39 18 19
-90 34 35 38 39
-91 33 36 5 8
-92 25 5 28 8
-93 45 25 48 28
-94 45 48 17 20
-95 37 17 40 20
-96 33 36 37 40
0

**************