C4graphGraph forms for C4 [ 96, 50 ] = SDD(C_24(1,5))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 50 ] = SDD(C_24(1,5)).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {36, 63}, {34, 62}, {35, 63}, {32, 61}, {33, 63}, {33, 62}, {26, 58}, {27, 59}, {29, 61}, {24, 57}, {29, 60}, {31, 62}, {25, 59}, {30, 60}, {31, 61}, {20, 55}, {25, 58}, {18, 54}, {19, 55}, {16, 53}, {26, 63}, {17, 55}, {24, 62}, {17, 54}, {27, 60}, {28, 59}, {20, 60}, {18, 59}, {19, 56}, {22, 61}, {21, 57}, {21, 56}, {23, 58}, {22, 56}, {23, 57}, {1, 49}, {6, 55}, {9, 56}, {3, 49}, {1, 50}, {2, 49}, {2, 54}, {6, 50}, {4, 49}, {15, 58}, {12, 57}, {7, 50}, {5, 51}, {5, 50}, {12, 52}, {14, 54}, {10, 51}, {13, 52}, {9, 51}, {15, 53}, {8, 51}, {14, 53}, {8, 52}, {11, 53}, {11, 52}, {12, 76}, {20, 84}, {14, 78}, {10, 75}, {18, 83}, {13, 76}, {7, 69}, {15, 77}, {9, 75}, {8, 75}, {22, 85}, {19, 80}, {14, 77}, {8, 76}, {21, 81}, {28, 88}, {21, 80}, {23, 82}, {11, 77}, {23, 81}, {22, 80}, {3, 68}, {11, 76}, {30, 89}, {1, 73}, {26, 82}, {27, 83}, {29, 85}, {6, 79}, {24, 81}, {29, 84}, {31, 86}, {3, 73}, {13, 71}, {25, 83}, {30, 84}, {31, 85}, {1, 74}, {2, 73}, {25, 82}, {2, 78}, {44, 96}, {10, 70}, {6, 74}, {4, 72}, {4, 73}, {7, 74}, {26, 87}, {5, 75}, {24, 86}, {5, 74}, {27, 84}, {28, 83}, {48, 96}, {13, 95}, {10, 94}, {16, 72}, {9, 80}, {7, 93}, {20, 79}, {18, 78}, {19, 79}, {28, 64}, {12, 81}, {16, 77}, {15, 82}, {17, 79}, {3, 92}, {17, 78}, {30, 65}, {36, 68}, {34, 67}, {32, 66}, {35, 64}, {38, 69}, {4, 96}, {44, 72}, {37, 65}, {37, 64}, {39, 66}, {38, 64}, {39, 65}, {42, 66}, {47, 71}, {46, 70}, {45, 69}, {43, 67}, {40, 65}, {47, 70}, {45, 68}, {41, 67}, {41, 66}, {46, 69}, {42, 71}, {40, 70}, {43, 68}, {48, 95}, {44, 67}, {16, 96}, {47, 95}, {46, 94}, {45, 93}, {43, 91}, {42, 90}, {40, 89}, {47, 94}, {45, 92}, {41, 91}, {36, 87}, {46, 93}, {41, 90}, {34, 86}, {35, 87}, {32, 85}, {42, 95}, {33, 87}, {40, 94}, {33, 86}, {48, 71}, {44, 91}, {43, 92}, {36, 92}, {48, 72}, {34, 91}, {32, 90}, {35, 88}, {38, 93}, {37, 89}, {37, 88}, {39, 90}, {38, 88}, {39, 89} }>;

(II) A more general form is to represent the graph as the orbit of {36, 63} under the group generated by the following permutations:

a: (69, 93)
b: (58, 82)
c: (68, 92)
d: (2, 7)(3, 6)(4, 5)(8, 48)(9, 44)(10, 16)(11, 47)(12, 42)(14, 46)(15, 40)(17, 45)(18, 38)(19, 43)(20, 36)(21, 41)(22, 34)(23, 39)(24, 32)(25, 37)(26, 30)(27, 35)(29, 33)(49, 50)(51, 72)(52, 71)(53, 70)(54, 69)(55, 68)(56, 67)(57, 66)(58, 65)(59, 64)(60, 63)(61, 62)(73, 74)(75, 96)(76, 95)(77, 94)(78, 93)(79, 92)(80, 91)(81, 90)(82, 89)(83, 88)(84, 87)(85, 86)
e: (1, 2, 14, 15, 23, 24, 31, 32, 39, 40, 46, 7)(3, 17, 16, 25, 12, 33, 22, 41, 30, 47, 38, 5)(4, 18, 11, 26, 21, 34, 29, 42, 37, 10, 45, 6)(8, 36, 19, 44, 27, 13, 35, 9, 43, 20, 48, 28)(49, 54, 53, 58, 57, 62, 61, 66, 65, 70, 69, 50)(51, 68, 55, 72, 59, 52, 63, 56, 67, 60, 71, 64)(73, 78, 77, 82, 81, 86, 85, 90, 89, 94, 93, 74)(75, 92, 79, 96, 83, 76, 87, 80, 91, 84, 95, 88)
f: (1, 3)(2, 4)(5, 36)(6, 43)(7, 45)(8, 26)(9, 33)(10, 35)(11, 15)(12, 23)(13, 25)(14, 16)(17, 44)(18, 48)(19, 34)(20, 41)(21, 24)(22, 31)(27, 42)(28, 47)(29, 32)(30, 39)(37, 40)(38, 46)(50, 68)(51, 63)(52, 58)(54, 72)(55, 67)(56, 62)(59, 71)(60, 66)(64, 70)(74, 92)(75, 87)(76, 82)(78, 96)(79, 91)(80, 86)(83, 95)(84, 90)(88, 94)
g: (65, 89)
h: (66, 90)
m: (63, 87)
n1: (72, 96)
a1: (53, 77)
b1: (54, 78)
c1: (60, 84)
d1: (50, 74)
e1: (52, 76)
f1: (71, 95)
g1: (55, 79)
h1: (56, 80)
m1: (61, 85)
n2: (67, 91)
a2: (64, 88)
b2: (49, 73)
c2: (59, 83)
d2: (70, 94)
e2: (51, 75)
f2: (62, 86)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 50 ]
96
-1 49 50 73 74
-2 78 49 73 54
-3 68 92 49 73
-4 49 72 73 96
-5 50 51 74 75
-6 55 79 50 74
-7 69 93 50 74
-8 51 52 75 76
-9 56 80 51 75
-10 70 94 51 75
-11 77 52 53 76
-12 57 81 52 76
-13 71 95 52 76
-14 77 78 53 54
-15 77 58 82 53
-16 77 72 96 53
-17 55 78 79 54
-18 78 59 83 54
-19 55 56 79 80
-20 55 79 60 84
-21 56 57 80 81
-22 56 80 61 85
-23 57 58 81 82
-24 57 81 62 86
-25 58 59 82 83
-26 58 82 63 87
-27 59 60 83 84
-28 88 59 83 64
-29 60 61 84 85
-30 89 60 84 65
-31 61 62 85 86
-32 66 90 61 85
-33 62 63 86 87
-34 67 91 62 86
-35 88 63 64 87
-36 68 92 63 87
-37 88 89 64 65
-38 88 69 93 64
-39 66 89 90 65
-40 89 70 94 65
-41 66 67 90 91
-42 66 90 71 95
-43 67 68 91 92
-44 67 91 72 96
-45 68 69 92 93
-46 69 70 93 94
-47 70 71 94 95
-48 71 72 95 96
-49 1 2 3 4
-50 1 5 6 7
-51 5 8 9 10
-52 11 12 13 8
-53 11 14 15 16
-54 2 14 17 18
-55 6 17 19 20
-56 22 19 9 21
-57 12 23 24 21
-58 23 25 15 26
-59 25 27 28 18
-60 27 29 30 20
-61 22 29 31 32
-62 33 34 24 31
-63 33 35 36 26
-64 35 37 38 28
-65 37 39 40 30
-66 39 41 42 32
-67 44 34 41 43
-68 45 3 36 43
-69 45 46 38 7
-70 46 47 40 10
-71 13 47 48 42
-72 44 4 48 16
-73 1 2 3 4
-74 1 5 6 7
-75 5 8 9 10
-76 11 12 13 8
-77 11 14 15 16
-78 2 14 17 18
-79 6 17 19 20
-80 22 19 9 21
-81 12 23 24 21
-82 23 25 15 26
-83 25 27 28 18
-84 27 29 30 20
-85 22 29 31 32
-86 33 34 24 31
-87 33 35 36 26
-88 35 37 38 28
-89 37 39 40 30
-90 39 41 42 32
-91 44 34 41 43
-92 45 3 36 43
-93 45 46 38 7
-94 46 47 40 10
-95 13 47 48 42
-96 44 4 48 16
0

**************