[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 51 ] =
SDD(R_12(11,4)).
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {42, 63}, {40, 62}, {41, 63}, {36, 60}, {37, 61}, {34, 59}, {39,
62}, {33, 59}, {32, 59}, {38, 61}, {32, 60}, {35, 61}, {35, 60}, {24, 56}, {26,
58}, {22, 55}, {25, 56}, {21, 55}, {27, 57}, {20, 55}, {26, 57}, {18, 54}, {30,
58}, {16, 53}, {19, 54}, {28, 57}, {31, 58}, {17, 55}, {29, 59}, {17, 54}, {29,
58}, {20, 56}, {23, 57}, {23, 56}, {1, 49}, {3, 49}, {1, 50}, {2, 49}, {6, 50},
{4, 49}, {7, 50}, {5, 51}, {9, 63}, {5, 50}, {6, 62}, {14, 54}, {12, 52}, {7,
63}, {10, 51}, {13, 52}, {4, 62}, {15, 53}, {9, 51}, {8, 51}, {14, 53}, {8, 52},
{2, 60}, {11, 53}, {3, 61}, {11, 52}, {12, 76}, {14, 78}, {30, 94}, {31, 95},
{10, 75}, {13, 76}, {9, 75}, {15, 77}, {28, 94}, {34, 96}, {8, 75}, {14, 77},
{8, 76}, {20, 80}, {24, 92}, {25, 93}, {36, 96}, {11, 77}, {23, 81}, {27, 93},
{11, 76}, {23, 80}, {1, 73}, {19, 91}, {18, 90}, {24, 80}, {26, 82}, {25, 80},
{3, 73}, {22, 92}, {16, 90}, {10, 64}, {27, 81}, {1, 74}, {2, 73}, {26, 81}, {6,
74}, {44, 96}, {13, 65}, {12, 64}, {30, 82}, {4, 73}, {7, 74}, {28, 81}, {31,
82}, {5, 75}, {21, 91}, {15, 65}, {29, 83}, {5, 74}, {29, 82}, {6, 86}, {48,
96}, {19, 67}, {18, 66}, {7, 87}, {4, 86}, {22, 68}, {16, 66}, {10, 88}, {12,
88}, {13, 89}, {2, 84}, {21, 67}, {15, 89}, {3, 85}, {30, 70}, {31, 71}, {22,
79}, {21, 79}, {28, 70}, {20, 79}, {18, 78}, {24, 68}, {25, 69}, {16, 77}, {19,
78}, {9, 87}, {17, 79}, {27, 69}, {17, 78}, {38, 69}, {37, 65}, {44, 72}, {39,
66}, {33, 71}, {45, 69}, {47, 71}, {46, 70}, {34, 72}, {41, 67}, {43, 64}, {36,
72}, {48, 92}, {47, 67}, {46, 66}, {45, 65}, {44, 64}, {42, 71}, {40, 70}, {43,
68}, {36, 84}, {47, 95}, {46, 94}, {45, 93}, {37, 85}, {34, 83}, {39, 86}, {33,
83}, {41, 91}, {32, 83}, {43, 88}, {38, 85}, {32, 84}, {48, 68}, {47, 91}, {46,
90}, {45, 89}, {44, 88}, {42, 95}, {35, 85}, {40, 94}, {35, 84}, {43, 92}, {48,
72}, {38, 93}, {37, 89}, {39, 90}, {42, 87}, {33, 95}, {41, 87}, {40, 86}
}>;
(II) A more general form is to represent the graph as the orbit of {42, 63}
under the group generated by the following permutations:
a: (69, 93) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (58, 82)
c: (68, 92)
d: (1, 3)(2, 4)(5, 37)(6, 35)(7, 38)(8, 13)(9, 45)(10, 15)(11, 12)(14, 43)(16,
44)(17, 22)(18, 48)(19, 24)(20, 21)(23, 47)(25, 41)(26, 31)(27, 42)(28, 33)(29,
30)(32, 40)(34, 46)(36, 39)(50, 61)(51, 65)(53, 64)(54, 68)(56, 67)(57, 71)(59,
70)(60, 62)(63, 69)(66, 72)(74, 85)(75, 89)(77, 88)(78, 92)(80, 91)(81, 95)(83,
94)(84, 86)(87, 93)(90, 96)
e: (65, 89)
f: (66, 90)
g: (2, 5)(3, 7)(4, 6)(8, 32)(9, 35)(10, 36)(11, 29)(12, 34)(13, 33)(14, 26)(15,
31)(16, 30)(17, 23)(18, 28)(19, 27)(21, 25)(22, 24)(37, 42)(38, 41)(39, 40)(43,
48)(45, 47)(49, 50)(51, 60)(52, 59)(53, 58)(54, 57)(55, 56)(61, 63)(64, 72)(65,
71)(66, 70)(67, 69)(73, 74)(75, 84)(76, 83)(77, 82)(78, 81)(79, 80)(85, 87)(88,
96)(89, 95)(90, 94)(91, 93)
h: (63, 87)
m: (72, 96)
n1: (53, 77)
a1: (57, 81)
b1: (60, 84)
c1: (50, 74)
d1: (1, 2, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 36, 33, 30, 27, 24, 21, 18,
15, 12, 9, 6)(4, 35, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(37, 44, 42, 40, 38,
48, 47, 46, 45, 43, 41, 39)(49, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50)(61,
72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62)(73, 84, 83, 82, 81, 80, 79, 78, 77,
76, 75, 74)(85, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86)
e1: (52, 76)
f1: (71, 95)
g1: (55, 79)
h1: (56, 80)
m1: (61, 85)
n2: (67, 91)
a2: (64, 88)
b2: (49, 73)
c2: (59, 83)
d2: (70, 94)
e2: (51, 75)
f2: (62, 86)
C4[ 96, 51 ]
96
-1 49 50 73 74
-2 49 60 73 84
-3 49 61 73 85
-4 49 62 73 86
-5 50 51 74 75
-6 50 62 74 86
-7 50 63 74 87
-8 51 52 75 76
-9 51 63 75 87
-10 88 51 64 75
-11 77 52 53 76
-12 88 52 64 76
-13 89 52 65 76
-14 77 78 53 54
-15 77 89 53 65
-16 66 77 90 53
-17 55 78 79 54
-18 66 78 90 54
-19 67 78 91 54
-20 55 56 79 80
-21 55 67 79 91
-22 55 68 79 92
-23 56 57 80 81
-24 56 68 80 92
-25 56 69 80 93
-26 57 58 81 82
-27 57 69 81 93
-28 57 70 81 94
-29 58 59 82 83
-30 58 70 82 94
-31 58 71 82 95
-32 59 60 83 84
-33 59 71 83 95
-34 59 72 83 96
-35 60 61 84 85
-36 60 72 84 96
-37 89 61 85 65
-38 69 93 61 85
-39 66 90 62 86
-40 70 94 62 86
-41 67 91 63 87
-42 71 95 63 87
-43 88 68 92 64
-44 88 72 96 64
-45 89 69 93 65
-46 66 90 70 94
-47 67 91 71 95
-48 68 92 72 96
-49 1 2 3 4
-50 1 5 6 7
-51 5 8 9 10
-52 11 12 13 8
-53 11 14 15 16
-54 14 17 18 19
-55 22 17 20 21
-56 23 24 25 20
-57 23 26 27 28
-58 26 29 30 31
-59 33 34 29 32
-60 2 35 36 32
-61 35 3 37 38
-62 4 6 39 40
-63 7 41 9 42
-64 44 12 10 43
-65 45 13 15 37
-66 46 16 39 18
-67 47 19 41 21
-68 22 24 48 43
-69 45 25 27 38
-70 46 28 40 30
-71 33 47 31 42
-72 44 34 36 48
-73 1 2 3 4
-74 1 5 6 7
-75 5 8 9 10
-76 11 12 13 8
-77 11 14 15 16
-78 14 17 18 19
-79 22 17 20 21
-80 23 24 25 20
-81 23 26 27 28
-82 26 29 30 31
-83 33 34 29 32
-84 2 35 36 32
-85 35 3 37 38
-86 4 6 39 40
-87 7 41 9 42
-88 44 12 10 43
-89 45 13 15 37
-90 46 16 39 18
-91 47 19 41 21
-92 22 24 48 43
-93 45 25 27 38
-94 46 28 40 30
-95 33 47 31 42
-96 44 34 36 48
0