C4graphGraph forms for C4 [ 96, 52 ] = SDD(R_12(5,10))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 96, 52 ] = SDD(R_12(5,10)).

(I) Following is a form readable by MAGMA:

g:=Graph<96|{ {40, 62}, {41, 63}, {36, 60}, {37, 61}, {34, 59}, {39, 62}, {33, 59}, {37, 63}, {32, 59}, {38, 61}, {32, 60}, {35, 60}, {24, 56}, {26, 58}, {22, 55}, {25, 56}, {21, 55}, {27, 57}, {20, 55}, {26, 57}, {18, 54}, {30, 58}, {16, 53}, {19, 54}, {28, 57}, {31, 58}, {17, 55}, {29, 59}, {17, 54}, {24, 63}, {29, 58}, {21, 62}, {20, 56}, {23, 57}, {18, 61}, {23, 56}, {1, 49}, {3, 49}, {1, 50}, {2, 49}, {6, 50}, {4, 49}, {7, 50}, {5, 51}, {9, 63}, {5, 50}, {6, 62}, {14, 54}, {12, 52}, {10, 51}, {13, 52}, {9, 51}, {15, 53}, {8, 51}, {14, 53}, {8, 52}, {2, 60}, {11, 53}, {3, 61}, {11, 52}, {4, 68}, {14, 78}, {12, 76}, {10, 75}, {13, 76}, {28, 93}, {31, 94}, {7, 69}, {15, 77}, {9, 75}, {8, 75}, {21, 86}, {14, 77}, {27, 88}, {8, 76}, {20, 80}, {36, 96}, {25, 92}, {11, 77}, {23, 81}, {11, 76}, {23, 80}, {18, 85}, {30, 89}, {1, 73}, {40, 96}, {24, 80}, {26, 82}, {19, 90}, {25, 80}, {3, 73}, {13, 71}, {27, 81}, {1, 74}, {2, 73}, {26, 81}, {6, 74}, {12, 64}, {10, 70}, {30, 82}, {4, 73}, {22, 91}, {7, 74}, {28, 81}, {31, 82}, {5, 75}, {15, 65}, {29, 83}, {5, 74}, {24, 87}, {29, 82}, {6, 86}, {48, 96}, {19, 66}, {13, 95}, {10, 94}, {12, 88}, {22, 67}, {2, 84}, {15, 89}, {3, 85}, {4, 92}, {16, 72}, {22, 79}, {28, 69}, {31, 70}, {7, 93}, {21, 79}, {20, 79}, {27, 64}, {18, 78}, {16, 77}, {25, 68}, {19, 78}, {9, 87}, {17, 79}, {17, 78}, {30, 65}, {35, 67}, {40, 72}, {38, 71}, {33, 66}, {34, 71}, {39, 64}, {41, 65}, {47, 71}, {46, 70}, {45, 69}, {44, 68}, {43, 67}, {42, 66}, {42, 64}, {47, 69}, {46, 68}, {43, 65}, {36, 72}, {44, 66}, {48, 94}, {45, 67}, {16, 96}, {47, 95}, {46, 94}, {45, 93}, {44, 92}, {43, 91}, {42, 90}, {41, 89}, {36, 84}, {37, 85}, {34, 83}, {39, 86}, {33, 83}, {47, 93}, {46, 92}, {43, 89}, {42, 88}, {37, 87}, {32, 83}, {38, 85}, {32, 84}, {44, 90}, {48, 70}, {45, 91}, {35, 84}, {35, 91}, {48, 72}, {38, 95}, {33, 90}, {34, 95}, {40, 86}, {41, 87}, {39, 88} }>;

(II) A more general form is to represent the graph as the orbit of {40, 62} under the group generated by the following permutations:

a: (57, 81)
b: (69, 93)
c: (54, 78)
d: (56, 80)
e: (62, 86)
f: (66, 90)
g: (67, 91)
h: (58, 82)
m: (60, 84)
n1: (64, 88)
a1: (52, 76)
b1: (1, 3, 37, 24, 20, 22, 45, 7)(2, 38, 9, 25, 17, 43, 28, 6)(4, 18, 41, 23, 21, 35, 47, 5)(8, 46, 19, 15, 26, 39, 36, 34)(10, 44, 14, 30, 27, 40, 32, 13)(11, 31, 42, 16, 29, 12, 48, 33)(49, 61, 63, 56, 55, 67, 69, 50)(51, 68, 54, 65, 57, 62, 60, 71)(52, 70, 66, 53, 58, 64, 72, 59)(73, 85, 87, 80, 79, 91, 93, 74)(75, 92, 78, 89, 81, 86, 84, 95)(76, 94, 90, 77, 82, 88, 96, 83)
c1: (72, 96)
d1: (61, 85)
e1: (2, 5)(3, 7)(4, 6)(8, 32)(9, 35)(10, 36)(11, 29)(12, 33)(13, 34)(14, 26)(15, 30)(16, 31)(17, 23)(18, 28)(19, 27)(21, 25)(22, 24)(37, 45)(38, 47)(39, 44)(40, 46)(41, 43)(49, 50)(51, 60)(52, 59)(53, 58)(54, 57)(55, 56)(61, 69)(62, 68)(63, 67)(64, 66)(70, 72)(73, 74)(75, 84)(76, 83)(77, 82)(78, 81)(79, 80)(85, 93)(86, 92)(87, 91)(88, 90)(94, 96)
f1: (1, 2, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 36, 34, 31, 28, 25, 22, 19, 15, 12, 9, 6)(4, 35, 33, 30, 27, 24, 21, 18, 16, 13, 10, 7)(37, 40, 38, 48, 47, 46, 45, 44, 43, 42, 41, 39)(49, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50)(61, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62)(73, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74)(85, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86)
g1: (63, 87)
h1: (51, 75)
m1: (65, 89)
n2: (55, 79)
a2: (59, 83)
b2: (68, 92)
c2: (50, 74)
d2: (70, 94)
e2: (71, 95)
f2: (49, 73)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 96, 52 ]
96
-1 49 50 73 74
-2 49 60 73 84
-3 49 61 73 85
-4 68 92 49 73
-5 50 51 74 75
-6 50 62 74 86
-7 69 93 50 74
-8 51 52 75 76
-9 51 63 75 87
-10 70 94 51 75
-11 77 52 53 76
-12 88 52 64 76
-13 71 95 52 76
-14 77 78 53 54
-15 77 89 53 65
-16 77 72 96 53
-17 55 78 79 54
-18 78 61 85 54
-19 66 78 90 54
-20 55 56 79 80
-21 55 79 62 86
-22 55 67 79 91
-23 56 57 80 81
-24 56 80 63 87
-25 56 68 80 92
-26 57 58 81 82
-27 88 57 81 64
-28 57 69 81 93
-29 58 59 82 83
-30 89 58 82 65
-31 58 70 82 94
-32 59 60 83 84
-33 66 90 59 83
-34 59 71 83 95
-35 67 91 60 84
-36 60 72 84 96
-37 61 63 85 87
-38 71 61 95 85
-39 88 62 64 86
-40 72 62 96 86
-41 89 63 65 87
-42 66 88 90 64
-43 67 89 91 65
-44 66 68 90 92
-45 67 69 91 93
-46 68 70 92 94
-47 69 71 93 95
-48 70 72 94 96
-49 1 2 3 4
-50 1 5 6 7
-51 5 8 9 10
-52 11 12 13 8
-53 11 14 15 16
-54 14 17 18 19
-55 22 17 20 21
-56 23 24 25 20
-57 23 26 27 28
-58 26 29 30 31
-59 33 34 29 32
-60 2 35 36 32
-61 3 37 38 18
-62 6 39 40 21
-63 24 37 41 9
-64 12 27 39 42
-65 15 30 41 43
-66 33 44 19 42
-67 22 45 35 43
-68 44 46 25 4
-69 45 47 28 7
-70 46 48 31 10
-71 34 13 47 38
-72 36 48 16 40
-73 1 2 3 4
-74 1 5 6 7
-75 5 8 9 10
-76 11 12 13 8
-77 11 14 15 16
-78 14 17 18 19
-79 22 17 20 21
-80 23 24 25 20
-81 23 26 27 28
-82 26 29 30 31
-83 33 34 29 32
-84 2 35 36 32
-85 3 37 38 18
-86 6 39 40 21
-87 24 37 41 9
-88 12 27 39 42
-89 15 30 41 43
-90 33 44 19 42
-91 22 45 35 43
-92 44 46 25 4
-93 45 47 28 7
-94 46 48 31 10
-95 34 13 47 38
-96 36 48 16 40
0

**************