[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 54 ] =
SS[96,14].
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {1, 3}, {84, 86}, {17, 19}, {1, 2}, {1, 5}, {83, 87}, {16, 20},
{1, 4}, {49, 55}, {82, 85}, {48, 56}, {82, 90}, {81, 89}, {51, 59}, {81, 88},
{16, 27}, {17, 26}, {16, 28}, {17, 28}, {52, 57}, {17, 31}, {80, 94}, {52, 58},
{49, 63}, {51, 60}, {84, 91}, {83, 92}, {14, 30}, {79, 95}, {77, 93}, {38, 54},
{45, 61}, {41, 56}, {42, 59}, {45, 60}, {47, 62}, {10, 24}, {74, 88}, {15, 29},
{11, 25}, {39, 53}, {41, 59}, {43, 57}, {14, 29}, {72, 91}, {46, 61}, {14, 26},
{15, 27}, {40, 60}, {42, 62}, {43, 63}, {12, 25}, {13, 24}, {44, 58}, {6, 30},
{13, 21}, {7, 31}, {37, 61}, {11, 18}, {47, 54}, {15, 21}, {36, 63}, {76, 87},
{71, 92}, {68, 95}, {64, 91}, {37, 62}, {46, 53}, {14, 18}, {70, 90}, {69, 89},
{66, 94}, {65, 93}, {38, 58}, {10, 20}, {75, 85}, {39, 57}, {12, 19}, {73, 86},
{40, 55}, {10, 43}, {13, 44}, {6, 36}, {26, 56}, {7, 36}, {67, 96}, {10, 41},
{6, 34}, {7, 35}, {13, 40}, {11, 45}, {12, 42}, {6, 46}, {7, 47}, {8, 33}, {9,
32}, {8, 34}, {9, 35}, {12, 39}, {9, 37}, {8, 37}, {27, 54}, {26, 55}, {11, 38},
{27, 53}, {78, 96}, {15, 32}, {16, 33}, {8, 49}, {9, 48}, {20, 84}, {19, 82},
{22, 84}, {18, 81}, {19, 80}, {22, 83}, {23, 82}, {21, 83}, {23, 81}, {22, 80},
{4, 85}, {31, 76}, {2, 86}, {3, 87}, {30, 73}, {4, 92}, {30, 70}, {23, 79}, {3,
90}, {29, 68}, {24, 65}, {23, 78}, {5, 95}, {25, 67}, {24, 66}, {31, 69}, {2,
89}, {59, 96}, {22, 77}, {21, 78}, {20, 79}, {3, 94}, {28, 65}, {25, 68}, {5,
88}, {5, 91}, {2, 93}, {29, 66}, {28, 67}, {18, 77}, {55, 86}, {42, 72}, {40,
75}, {63, 92}, {60, 95}, {54, 85}, {41, 74}, {4, 96}, {58, 94}, {57, 93}, {36,
64}, {33, 71}, {61, 90}, {62, 89}, {32, 72}, {44, 69}, {45, 71}, {32, 75}, {33,
74}, {39, 76}, {34, 78}, {35, 79}, {44, 64}, {43, 70}, {53, 88}, {47, 66}, {35,
77}, {38, 73}, {56, 87}, {46, 65}, {48, 64}, {34, 80}, {48, 67}, {50, 70}, {49,
68}, {50, 71}, {50, 69}, {50, 72}, {51, 73}, {52, 74}, {51, 76}, {52, 75}
}>;
(II) A more general form is to represent the graph as the orbit of {1, 3}
under the group generated by the following permutations:
a: (1, 22, 23)(2, 80, 81, 3, 77, 82)(4, 84, 78, 5, 83, 79)(6, 53, 76, 7, 54,
73)(8, 74, 56, 9, 75, 55)(10, 67, 72, 13, 68, 71)(11, 70, 65, 12, 69, 66)(14,
61, 57, 17, 62, 58)(15, 60, 63, 16, 59, 64)(18, 90, 93, 19, 89, 94)(20, 96, 91,
21, 95, 92)(24, 25, 50)(26, 37, 52)(27, 51, 36)(28, 42, 44, 29, 45, 43)(30, 46,
39, 31, 47, 38)(32, 40, 49, 33, 41, 48)(34, 88, 87, 35, 85, 86) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 4)(6, 8)(7, 9)(10, 11)(12, 13)(14, 16)(15, 17)(18, 20)(19, 21)(22,
23)(24, 25)(26, 27)(28, 29)(30, 33)(31, 32)(36, 37)(38, 41)(39, 40)(42, 44)(43,
45)(46, 49)(47, 48)(51, 52)(53, 55)(54, 56)(57, 60)(58, 59)(61, 63)(62, 64)(65,
68)(66, 67)(69, 72)(70, 71)(73, 74)(75, 76)(77, 79)(78, 80)(81, 84)(82, 83)(85,
87)(86, 88)(89, 91)(90, 92)(93, 95)(94, 96)
c: (1, 18, 20)(2, 77, 84)(3, 14, 10)(4, 11, 16)(5, 81, 79)(6, 13, 76)(7, 64,
69)(8, 75, 12)(9, 72, 62)(15, 59, 61)(17, 63, 58)(19, 49, 52)(21, 51, 46)(22,
86, 93)(23, 95, 88)(24, 87, 30)(25, 33, 85)(26, 43, 94)(27, 96, 45)(28, 92,
38)(29, 41, 90)(31, 36, 44)(32, 42, 37)(34, 40, 39)(35, 91, 89)(47, 48, 50)(53,
78, 60)(54, 67, 71)(55, 57, 80)(56, 70, 66)(65, 83, 73)(68, 74, 82)
d: (2, 3)(4, 5)(6, 7)(8, 9)(10, 13)(11, 12)(14, 17)(15, 16)(18, 19)(20, 21)(28,
29)(30, 31)(32, 33)(34, 35)(38, 39)(40, 41)(42, 45)(43, 44)(46, 47)(48, 49)(53,
54)(55, 56)(57, 58)(59, 60)(61, 62)(63, 64)(65, 66)(67, 68)(69, 70)(71, 72)(73,
76)(74, 75)(77, 80)(78, 79)(81, 82)(83, 84)(85, 88)(86, 87)(89, 90)(91, 92)(93,
94)(95, 96)
C4[ 96, 54 ]
96
-1 2 3 4 5
-2 1 89 93 86
-3 1 90 94 87
-4 1 92 85 96
-5 88 1 91 95
-6 34 46 36 30
-7 35 36 47 31
-8 33 34 37 49
-9 35 37 48 32
-10 24 41 20 43
-11 45 25 38 18
-12 25 39 19 42
-13 44 24 40 21
-14 26 18 29 30
-15 27 29 21 32
-16 33 27 28 20
-17 26 28 19 31
-18 11 77 14 81
-19 12 80 82 17
-20 79 16 84 10
-21 78 13 15 83
-22 77 80 83 84
-23 78 79 81 82
-24 66 13 10 65
-25 11 12 67 68
-26 55 56 14 17
-27 15 16 53 54
-28 67 16 17 65
-29 66 68 14 15
-30 14 70 6 73
-31 69 17 7 76
-32 15 72 9 75
-33 16 71 8 74
-34 78 80 6 8
-35 77 79 7 9
-36 6 7 63 64
-37 61 62 8 9
-38 11 58 73 54
-39 12 57 53 76
-40 55 13 60 75
-41 56 59 74 10
-42 12 59 72 62
-43 57 70 63 10
-44 13 58 69 64
-45 11 60 71 61
-46 6 61 53 65
-47 66 7 62 54
-48 56 67 9 64
-49 55 68 8 63
-50 69 70 71 72
-51 59 60 73 76
-52 57 58 74 75
-53 88 46 27 39
-54 47 27 38 85
-55 26 49 40 86
-56 26 48 41 87
-57 93 39 52 43
-58 44 38 94 52
-59 51 41 96 42
-60 45 40 51 95
-61 45 46 90 37
-62 89 47 37 42
-63 36 92 49 43
-64 44 36 91 48
-65 24 46 93 28
-66 24 47 94 29
-67 25 48 28 96
-68 25 49 29 95
-69 44 89 50 31
-70 90 50 30 43
-71 33 45 92 50
-72 91 50 42 32
-73 38 51 30 86
-74 33 88 41 52
-75 40 52 85 32
-76 39 51 31 87
-77 22 35 93 18
-78 23 34 96 21
-79 23 35 95 20
-80 22 34 94 19
-81 88 23 89 18
-82 23 90 19 85
-83 22 92 21 87
-84 22 91 20 86
-85 4 82 75 54
-86 55 2 73 84
-87 56 3 83 76
-88 81 5 74 53
-89 2 69 81 62
-90 3 70 82 61
-91 5 72 84 64
-92 4 71 83 63
-93 77 2 57 65
-94 66 3 58 80
-95 68 79 5 60
-96 67 78 4 59
0