[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 96, 55 ] =
SS[96,15].
(I) Following is a form readable by MAGMA:
g:=Graph<96|{ {52, 53}, {1, 3}, {1, 2}, {84, 87}, {1, 5}, {82, 86}, {81, 85},
{1, 4}, {51, 54}, {50, 55}, {17, 20}, {16, 21}, {16, 23}, {17, 25}, {82, 90},
{81, 89}, {51, 59}, {49, 56}, {16, 27}, {83, 88}, {50, 57}, {17, 29}, {49, 60},
{52, 58}, {80, 95}, {84, 91}, {83, 92}, {38, 54}, {78, 94}, {77, 93}, {7, 22},
{9, 24}, {39, 54}, {41, 56}, {45, 63}, {15, 28}, {75, 88}, {38, 53}, {44, 63},
{45, 62}, {47, 60}, {10, 30}, {67, 87}, {66, 86}, {65, 85}, {14, 26}, {11, 31},
{42, 62}, {46, 59}, {47, 58}, {43, 61}, {15, 24}, {72, 95}, {42, 61}, {46, 57},
{6, 30}, {70, 94}, {69, 93}, {14, 22}, {13, 21}, {7, 31}, {10, 19}, {12, 21},
{11, 18}, {35, 57}, {64, 90}, {36, 62}, {37, 63}, {76, 87}, {14, 18}, {74, 86},
{73, 85}, {68, 88}, {15, 19}, {40, 53}, {10, 20}, {13, 19}, {12, 18}, {34, 60},
{35, 61}, {36, 58}, {37, 59}, {41, 55}, {6, 25}, {11, 20}, {8, 23}, {39, 56},
{40, 55}, {6, 36}, {7, 37}, {6, 37}, {15, 44}, {14, 42}, {7, 34}, {13, 40}, {12,
41}, {71, 96}, {8, 32}, {9, 33}, {8, 34}, {9, 35}, {8, 35}, {10, 38}, {13, 33},
{12, 32}, {11, 39}, {9, 36}, {79, 96}, {17, 43}, {16, 45}, {22, 84}, {23, 81},
{25, 80}, {29, 84}, {27, 82}, {24, 82}, {25, 83}, {26, 81}, {28, 83}, {4, 86},
{3, 87}, {28, 72}, {2, 85}, {24, 79}, {2, 90}, {29, 69}, {27, 67}, {4, 92}, {30,
70}, {31, 71}, {18, 75}, {23, 78}, {21, 76}, {3, 89}, {19, 73}, {4, 94}, {22,
77}, {59, 96}, {3, 95}, {27, 71}, {26, 70}, {5, 88}, {28, 65}, {30, 67}, {5,
91}, {26, 68}, {20, 74}, {31, 65}, {2, 93}, {29, 66}, {46, 78}, {47, 79}, {61,
92}, {32, 66}, {34, 64}, {47, 77}, {42, 73}, {60, 95}, {33, 69}, {58, 94}, {57,
93}, {56, 92}, {5, 96}, {62, 91}, {33, 68}, {41, 79}, {63, 89}, {43, 76}, {44,
75}, {45, 74}, {32, 72}, {39, 78}, {38, 77}, {43, 64}, {44, 64}, {55, 91}, {54,
90}, {53, 89}, {49, 67}, {50, 65}, {48, 69}, {48, 70}, {52, 66}, {48, 71}, {51,
68}, {40, 80}, {50, 74}, {48, 72}, {49, 73}, {46, 80}, {51, 76}, {52, 75}
}>;
(II) A more general form is to represent the graph as the orbit of {52, 53}
under the group generated by the following permutations:
a: (1, 22, 33, 94, 37, 40)(2, 14, 9, 78, 63, 55)(3, 84, 69, 70, 6, 80)(4, 7,
13)(5, 77, 68, 58, 59, 53)(8, 16, 74, 65, 73, 61)(10, 83, 60, 76, 66, 71)(11,
15, 56, 64, 12, 82)(17, 72, 67)(18, 24, 39, 44, 41, 90)(19, 92, 34, 21, 86,
31)(20, 28, 49, 43, 32, 27)(23, 45, 50, 85, 42, 35)(25, 95, 87, 29, 48, 30)(26,
36, 46, 89, 91, 93)(38, 88, 47, 51, 52, 96)(54, 75, 79)(57, 81, 62) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 4)(6, 8)(7, 9)(10, 12)(11, 13)(14, 15)(16, 17)(18, 19)(20, 21)(22,
24)(23, 25)(26, 28)(27, 29)(30, 32)(31, 33)(34, 36)(35, 37)(38, 41)(39, 40)(42,
44)(43, 45)(49, 52)(50, 51)(53, 56)(54, 55)(57, 59)(58, 60)(61, 63)(62, 64)(65,
68)(66, 67)(69, 71)(70, 72)(73, 75)(74, 76)(77, 79)(78, 80)(81, 83)(82, 84)(85,
88)(86, 87)(89, 92)(90, 91)(93, 96)(94, 95)
c: (1, 18)(2, 11)(3, 12)(4, 14)(5, 75)(6, 9)(7, 82)(8, 67)(10, 57)(13, 80)(15,
59)(16, 60)(17, 69)(19, 46)(20, 93)(21, 95)(22, 86)(23, 49)(24, 37)(25, 33)(26,
92)(27, 34)(28, 51)(30, 35)(31, 90)(32, 87)(38, 50)(39, 85)(41, 89)(42, 94)(43,
48)(44, 96)(45, 47)(52, 91)(53, 55)(54, 65)(56, 81)(58, 62)(61, 70)(63, 79)(64,
71)(66, 84)(68, 83)(72, 76)(73, 78)(74, 77)
d: (2, 4, 5, 3)(6, 7, 8, 9)(10, 11, 12, 13)(14, 16, 15, 17)(18, 21, 19, 20)(22,
23, 24, 25)(26, 27, 28, 29)(30, 31, 32, 33)(34, 35, 36, 37)(38, 39, 41, 40)(42,
45, 44, 43)(46, 47)(49, 50, 52, 51)(53, 54, 56, 55)(57, 58, 59, 60)(61, 62, 63,
64)(65, 66, 68, 67)(69, 70, 71, 72)(73, 74, 75, 76)(77, 78, 79, 80)(81, 82, 83,
84)(85, 86, 88, 87)(89, 90, 92, 91)(93, 94, 96, 95)
C4[ 96, 55 ]
96
-1 2 3 4 5
-2 1 90 93 85
-3 1 89 95 87
-4 1 92 94 86
-5 88 1 91 96
-6 25 36 37 30
-7 22 34 37 31
-8 23 34 35 32
-9 33 24 35 36
-10 38 19 30 20
-11 39 18 20 31
-12 18 41 21 32
-13 33 40 19 21
-14 22 26 18 42
-15 44 24 28 19
-16 23 45 27 21
-17 25 29 20 43
-18 11 12 14 75
-19 13 15 73 10
-20 11 17 74 10
-21 12 13 16 76
-22 77 14 7 84
-23 78 81 16 8
-24 79 15 82 9
-25 80 6 17 83
-26 68 14 70 81
-27 67 16 71 82
-28 15 72 83 65
-29 66 69 17 84
-30 67 70 6 10
-31 11 71 7 65
-32 66 12 72 8
-33 13 68 69 9
-34 60 7 8 64
-35 57 61 8 9
-36 58 6 62 9
-37 59 6 7 63
-38 77 53 10 54
-39 11 56 78 54
-40 55 13 80 53
-41 55 12 56 79
-42 14 61 62 73
-43 17 61 64 76
-44 15 63 64 75
-45 16 62 63 74
-46 78 57 80 59
-47 77 79 58 60
-48 69 70 71 72
-49 56 67 60 73
-50 55 57 74 65
-51 68 59 54 76
-52 66 58 53 75
-53 89 38 40 52
-54 90 38 39 51
-55 91 50 40 41
-56 92 49 39 41
-57 35 46 93 50
-58 36 47 94 52
-59 46 37 51 96
-60 34 47 49 95
-61 35 92 42 43
-62 45 36 91 42
-63 44 45 89 37
-64 44 34 90 43
-65 28 50 85 31
-66 29 52 86 32
-67 27 49 30 87
-68 33 88 26 51
-69 33 48 93 29
-70 26 48 94 30
-71 48 27 96 31
-72 48 28 95 32
-73 49 19 85 42
-74 45 50 20 86
-75 44 88 18 52
-76 51 21 43 87
-77 22 47 38 93
-78 23 46 39 94
-79 24 47 41 96
-80 46 25 40 95
-81 23 89 26 85
-82 24 90 27 86
-83 88 25 92 28
-84 22 91 29 87
-85 2 81 73 65
-86 66 4 82 74
-87 67 3 84 76
-88 68 5 83 75
-89 3 81 63 53
-90 2 82 64 54
-91 55 5 62 84
-92 56 4 61 83
-93 77 2 57 69
-94 78 58 4 70
-95 3 80 60 72
-96 79 59 5 71
0