[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 97, 1 ] =
C_97(1,22).
(I) Following is a form readable by MAGMA:
g:=Graph<97|{ {2, 3}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86,
87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70,
71}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {24,
25}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{20, 21}, {22, 23}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51},
{52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67},
{68, 69}, {1, 2}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74},
{37, 38}, {33, 34}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{21, 22}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66},
{69, 70}, {3, 4}, {91, 92}, {83, 84}, {75, 76}, {35, 36}, {27, 28}, {11, 12},
{19, 20}, {43, 44}, {51, 52}, {59, 60}, {67, 68}, {7, 8}, {87, 88}, {71, 72},
{23, 24}, {39, 40}, {55, 56}, {1, 23}, {73, 95}, {72, 94}, {33, 55}, {32, 54},
{8, 30}, {9, 31}, {40, 62}, {41, 63}, {64, 86}, {65, 87}, {2, 24}, {71, 93},
{70, 92}, {38, 60}, {35, 57}, {34, 56}, {3, 25}, {6, 28}, {7, 29}, {39, 61},
{66, 88}, {67, 89}, {4, 26}, {37, 59}, {36, 58}, {5, 27}, {68, 90}, {69, 91},
{15, 16}, {79, 80}, {47, 48}, {10, 32}, {75, 97}, {74, 96}, {31, 53}, {30, 52},
{27, 49}, {26, 48}, {11, 33}, {14, 36}, {15, 37}, {12, 34}, {29, 51}, {28, 50},
{13, 35}, {16, 38}, {25, 47}, {24, 46}, {17, 39}, {18, 40}, {23, 45}, {22, 44},
{19, 41}, {20, 42}, {21, 43}, {31, 32}, {95, 96}, {4, 79}, {16, 91}, {20, 95},
{1, 76}, {3, 78}, {17, 92}, {19, 94}, {2, 77}, {18, 93}, {5, 80}, {7, 82}, {13,
88}, {15, 90}, {6, 81}, {14, 89}, {8, 83}, {12, 87}, {9, 84}, {11, 86}, {10,
85}, {1, 97}, {42, 64}, {43, 65}, {46, 68}, {47, 69}, {58, 80}, {59, 81}, {62,
84}, {63, 85}, {44, 66}, {45, 67}, {60, 82}, {61, 83}, {21, 96}, {48, 70}, {49,
71}, {56, 78}, {57, 79}, {22, 97}, {50, 72}, {51, 73}, {54, 76}, {55, 77}, {52,
74}, {53, 75}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 76, 97, 23)(3, 54, 96, 45)(4, 32, 95, 67)(5, 10, 94, 89)(6, 85, 93,
14)(7, 63, 92, 36)(8, 41, 91, 58)(9, 19, 90, 80)(11, 72, 88, 27)(12, 50, 87,
49)(13, 28, 86, 71)(15, 81, 84, 18)(16, 59, 83, 40)(17, 37, 82, 62)(20, 68, 79,
31)(21, 46, 78, 53)(22, 24, 77, 75)(25, 55, 74, 44)(26, 33, 73, 66)(29, 64, 70,
35)(30, 42, 69, 57)(34, 51, 65, 48)(38, 60, 61, 39)(43, 47, 56, 52)
C4[ 97, 1 ]
97
-1 23 2 97 76
-2 77 1 24 3
-3 78 2 25 4
-4 79 3 26 5
-5 80 4 27 6
-6 81 5 28 7
-7 82 6 29 8
-8 83 7 30 9
-9 84 8 31 10
-10 11 85 9 32
-11 33 12 86 10
-12 11 34 13 87
-13 88 12 35 14
-14 89 13 36 15
-15 90 14 37 16
-16 91 15 38 17
-17 92 16 39 18
-18 93 17 40 19
-19 94 18 41 20
-20 95 19 42 21
-21 22 96 20 43
-22 44 23 97 21
-23 22 1 45 24
-24 23 2 46 25
-25 24 3 47 26
-26 25 4 48 27
-27 26 5 49 28
-28 27 6 50 29
-29 28 7 51 30
-30 29 8 52 31
-31 30 9 53 32
-32 33 31 10 54
-33 11 55 34 32
-34 33 12 56 35
-35 34 13 57 36
-36 35 14 58 37
-37 36 15 59 38
-38 37 16 60 39
-39 38 17 61 40
-40 39 18 62 41
-41 40 19 63 42
-42 41 20 64 43
-43 44 42 21 65
-44 22 66 45 43
-45 44 23 67 46
-46 45 24 68 47
-47 46 25 69 48
-48 47 26 70 49
-49 48 27 71 50
-50 49 28 72 51
-51 50 29 73 52
-52 51 30 74 53
-53 52 31 75 54
-54 55 53 32 76
-55 33 77 56 54
-56 55 34 78 57
-57 56 35 79 58
-58 57 36 80 59
-59 58 37 81 60
-60 59 38 82 61
-61 60 39 83 62
-62 61 40 84 63
-63 62 41 85 64
-64 63 42 86 65
-65 66 64 43 87
-66 44 88 67 65
-67 66 45 89 68
-68 67 46 90 69
-69 68 47 91 70
-70 69 48 92 71
-71 70 49 93 72
-72 71 50 94 73
-73 72 51 95 74
-74 73 52 96 75
-75 74 53 97 76
-76 77 1 75 54
-77 55 78 2 76
-78 77 56 79 3
-79 78 57 80 4
-80 79 58 81 5
-81 80 59 82 6
-82 81 60 83 7
-83 82 61 84 8
-84 83 62 85 9
-85 84 63 86 10
-86 11 85 64 87
-87 88 12 86 65
-88 66 89 13 87
-89 88 67 90 14
-90 89 68 91 15
-91 90 69 92 16
-92 91 70 93 17
-93 92 71 94 18
-94 93 72 95 19
-95 94 73 96 20
-96 95 74 97 21
-97 22 1 96 75
0