C4graphGraph forms for C4 [ 98, 1 ] = W(49,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 98, 1 ] = W(49,2).

(I) Following is a form readable by MAGMA:

g:=Graph<98|{ {2, 3}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {20, 21}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {1, 2}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {3, 4}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {27, 28}, {11, 12}, {19, 20}, {35, 36}, {43, 44}, {51, 52}, {7, 8}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {15, 16}, {79, 80}, {47, 48}, {1, 49}, {2, 50}, {3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11, 59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {1, 51}, {4, 54}, {5, 55}, {8, 58}, {9, 59}, {12, 62}, {13, 63}, {2, 52}, {3, 53}, {10, 60}, {11, 61}, {6, 56}, {7, 57}, {31, 32}, {95, 96}, {14, 64}, {15, 65}, {30, 80}, {31, 81}, {46, 96}, {47, 97}, {16, 64}, {29, 77}, {28, 76}, {27, 75}, {26, 74}, {25, 73}, {24, 72}, {23, 71}, {22, 70}, {21, 69}, {20, 68}, {19, 67}, {17, 65}, {18, 66}, {30, 78}, {31, 79}, {48, 96}, {49, 97}, {50, 98}, {16, 66}, {29, 79}, {28, 78}, {25, 75}, {24, 74}, {21, 71}, {20, 70}, {17, 67}, {48, 98}, {18, 68}, {27, 77}, {26, 76}, {19, 69}, {22, 72}, {23, 73}, {1, 98}, {32, 80}, {33, 81}, {34, 82}, {35, 83}, {36, 84}, {37, 85}, {38, 86}, {39, 87}, {40, 88}, {41, 89}, {42, 90}, {43, 91}, {44, 92}, {45, 93}, {46, 94}, {47, 95}, {32, 82}, {33, 83}, {36, 86}, {37, 87}, {40, 90}, {41, 91}, {44, 94}, {45, 95}, {34, 84}, {35, 85}, {42, 92}, {43, 93}, {38, 88}, {39, 89}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (40, 89)
b: (16, 65)
c: (6, 55)
d: (7, 56)
e: (11, 60)
f: (29, 78)
g: (23, 72)
h: (48, 97)
m: (27, 76)
n1: (38, 87)
a1: (3, 52)
b1: (14, 63)
c1: (15, 64)
d1: (8, 57)
e1: (32, 81)
f1: (36, 85)
g1: (5, 54)
h1: (20, 69)
m1: (2, 49)(3, 48)(4, 47)(5, 46)(6, 45)(7, 44)(8, 43)(9, 42)(10, 41)(11, 40)(12, 39)(13, 38)(14, 37)(15, 36)(16, 35)(17, 34)(18, 33)(19, 32)(20, 31)(21, 30)(22, 29)(23, 28)(24, 27)(25, 26)(51, 98)(52, 97)(53, 96)(54, 95)(55, 94)(56, 93)(57, 92)(58, 91)(59, 90)(60, 89)(61, 88)(62, 87)(63, 86)(64, 85)(65, 84)(66, 83)(67, 82)(68, 81)(69, 80)(70, 79)(71, 78)(72, 77)(73, 76)(74, 75)
n2: (2, 51)
a2: (18, 67)
b2: (30, 79)
c2: (25, 74)
d2: (46, 95)
e2: (12, 61)
f2: (17, 66)
g2: (43, 92)
h2: (39, 88)
m2: (44, 93)
n3: (26, 75)
a3: (45, 94)
b3: (21, 70)
c3: (13, 62)
d3: (47, 96)
e3: (9, 58)
f3: (41, 90)
g3: (28, 77)
h3: (37, 86)
m3: (33, 82)
n4: (22, 71)
a4: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49)(50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98)
b4: (4, 53)
c4: (10, 59)
d4: (49, 98)
e4: (35, 84)
f4: (42, 91)
g4: (19, 68)
h4: (31, 80)
m4: (34, 83)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 98, 1 ]
98
-1 2 49 51 98
-2 1 3 50 52
-3 2 4 51 53
-4 3 5 52 54
-5 55 4 6 53
-6 56 5 7 54
-7 55 57 6 8
-8 56 58 7 9
-9 57 59 8 10
-10 11 58 60 9
-11 12 59 61 10
-12 11 13 60 62
-13 12 14 61 63
-14 13 15 62 64
-15 14 16 63 65
-16 66 15 17 64
-17 67 16 18 65
-18 66 68 17 19
-19 67 69 18 20
-20 68 70 19 21
-21 22 69 71 20
-22 23 70 72 21
-23 22 24 71 73
-24 23 25 72 74
-25 24 26 73 75
-26 25 27 74 76
-27 77 26 28 75
-28 78 27 29 76
-29 77 79 28 30
-30 78 80 29 31
-31 79 81 30 32
-32 33 80 82 31
-33 34 81 83 32
-34 33 35 82 84
-35 34 36 83 85
-36 35 37 84 86
-37 36 38 85 87
-38 88 37 39 86
-39 89 38 40 87
-40 88 90 39 41
-41 89 91 40 42
-42 90 92 41 43
-43 44 91 93 42
-44 45 92 94 43
-45 44 46 93 95
-46 45 47 94 96
-47 46 48 95 97
-48 47 49 96 98
-49 1 48 50 97
-50 2 49 51 98
-51 1 3 50 52
-52 2 4 51 53
-53 3 5 52 54
-54 55 4 6 53
-55 56 5 7 54
-56 55 57 6 8
-57 56 58 7 9
-58 57 59 8 10
-59 11 58 60 9
-60 12 59 61 10
-61 11 13 60 62
-62 12 14 61 63
-63 13 15 62 64
-64 14 16 63 65
-65 66 15 17 64
-66 67 16 18 65
-67 66 68 17 19
-68 67 69 18 20
-69 68 70 19 21
-70 22 69 71 20
-71 23 70 72 21
-72 22 24 71 73
-73 23 25 72 74
-74 24 26 73 75
-75 25 27 74 76
-76 77 26 28 75
-77 78 27 29 76
-78 77 79 28 30
-79 78 80 29 31
-80 79 81 30 32
-81 33 80 82 31
-82 34 81 83 32
-83 33 35 82 84
-84 34 36 83 85
-85 35 37 84 86
-86 36 38 85 87
-87 88 37 39 86
-88 89 38 40 87
-89 88 90 39 41
-90 89 91 40 42
-91 90 92 41 43
-92 44 91 93 42
-93 45 92 94 43
-94 44 46 93 95
-95 45 47 94 96
-96 46 48 95 97
-97 47 49 96 98
-98 1 48 50 97
0

**************