C4graphConstructions for C4[ 98, 2 ] = {4,4}_7,7

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 98, 2 ]. See Glossary for some detail.

{4, 4}_ 7, 7 = PS( 14, 7; 1) = PS( 7, 14; 1)

      = PS( 14, 14; 1) = CPM( 7, 2, 1, 1) = CPM( 7, 2, 1, 2)

      = AMC( 2, 7, [ 5. 3: 6. 2]) = UG(ATD[ 98, 1]) = UG(ATD[ 98, 2])

      = UG(Rmap(196, 3) { 4, 4| 14}_ 14) = MG(Rmap( 98, 3) { 4, 4| 7}_ 14) = MG(Rmap( 98, 4) { 14, 14| 14}_ 14)

      = DG(Rmap( 98, 4) { 14, 14| 14}_ 14) = MG(Rmap( 98, 5) { 14, 14| 14}_ 14) = DG(Rmap( 98, 5) { 14, 14| 14}_ 14)

      = MG(Rmap( 98, 6) { 14, 14| 2}_ 14) = DG(Rmap( 98, 6) { 14, 14| 2}_ 14) = DG(Rmap( 98, 11) { 4, 14| 14}_ 4)

      = XI(Rmap( 49, 3) { 7, 14| 14}_ 14) = DG(Rmap( 49, 4) { 14, 7| 14}_ 14) = B({4, 4}_ 7, 0)

      = PL({4, 4}_ 7, 0[ 7^ 14]) = BGCG({4, 4}_ 7, 0; K1;1) = AT[ 98, 2]

     

Cyclic coverings

mod 14:
1234567
1 1 13 0 - - - - 0
2 0 1 13 0 - - - -
3 - 0 1 13 0 - - -
4 - - 0 1 13 0 - -
5 - - - 0 1 13 0 -
6 - - - - 0 1 13 7
7 0 - - - - 7 1 13

mod 14:
1234567
1 1 13 0 12 - - - - -
2 0 2 - 0 12 - - - -
3 - 0 2 - 0 12 - - -
4 - - 0 2 - 0 12 - -
5 - - - 0 2 - 0 12 -
6 - - - - 0 2 - 0 12
7 - - - - - 0 2 1 13

mod 14:
1234567
1 1 13 0 - - 0 - -
2 0 - 0 - 1 13 - -
3 - 0 - 0 - 0 12 -
4 - - 0 7 - - 0 12
5 0 1 13 - - - 13 -
6 - - 0 2 - 1 - 0
7 - - - 0 2 - 0 7

mod 14:
1234567
1 - 0 8 - - - - 0 6
2 0 6 - 0 8 - - - -
3 - 0 6 - 0 8 - - -
4 - - 0 6 - 0 8 - -
5 - - - 0 6 - 0 8 -
6 - - - - 0 6 - 1 7
7 0 8 - - - - 7 13 -

mod 14:
1234567
1 - 0 0 - - 0 0
2 0 - 1 0 - - 1
3 0 13 - 0 13 - -
4 - 0 0 - 0 4 -
5 - - 1 0 - 5 5
6 0 - - 10 9 - 1
7 0 13 - - 9 13 -