[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 100, 1 ] =
W(50,2).
(I) Following is a form readable by MAGMA:
g:=Graph<100|{ {2, 3}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88,
89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72,
73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56,
57}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {4, 5}, {6, 7}, {8, 9},
{10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {32, 33}, {34, 35},
{36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51},
{52, 53}, {54, 55}, {1, 2}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82},
{77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {29, 30}, {25, 26},
{21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {33, 34}, {37, 38}, {41, 42},
{45, 46}, {49, 50}, {53, 54}, {3, 4}, {99, 100}, {91, 92}, {83, 84}, {75, 76},
{67, 68}, {59, 60}, {27, 28}, {11, 12}, {19, 20}, {35, 36}, {43, 44}, {51, 52},
{7, 8}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {15, 16}, {79, 80},
{47, 48}, {2, 51}, {4, 53}, {6, 55}, {8, 57}, {10, 59}, {12, 61}, {14, 63}, {1,
50}, {4, 55}, {5, 54}, {8, 59}, {9, 58}, {12, 63}, {13, 62}, {1, 52}, {3, 54},
{9, 60}, {11, 62}, {2, 53}, {3, 52}, {10, 61}, {11, 60}, {5, 56}, {7, 58}, {6,
57}, {95, 96}, {31, 32}, {7, 56}, {13, 64}, {31, 82}, {29, 80}, {15, 66}, {45,
96}, {47, 98}, {14, 65}, {31, 80}, {30, 81}, {15, 64}, {46, 97}, {47, 96}, {16,
65}, {30, 79}, {28, 77}, {26, 75}, {24, 73}, {22, 71}, {18, 67}, {20, 69}, {48,
97}, {50, 99}, {16, 67}, {29, 78}, {28, 79}, {25, 74}, {24, 75}, {21, 70}, {20,
71}, {17, 66}, {48, 99}, {49, 98}, {17, 68}, {27, 78}, {25, 76}, {19, 70}, {49,
100}, {18, 69}, {27, 76}, {26, 77}, {19, 68}, {51, 100}, {21, 72}, {23, 74},
{22, 73}, {23, 72}, {1, 100}, {32, 81}, {34, 83}, {36, 85}, {38, 87}, {40, 89},
{42, 91}, {44, 93}, {46, 95}, {32, 83}, {33, 82}, {36, 87}, {37, 86}, {40, 91},
{41, 90}, {44, 95}, {45, 94}, {33, 84}, {35, 86}, {41, 92}, {43, 94}, {34, 85},
{35, 84}, {42, 93}, {43, 92}, {37, 88}, {39, 90}, {38, 89}, {63, 64}, {39, 88}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (15, 65) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (36, 86)
c: (40, 90)
d: (11, 61)
e: (42, 92)
f: (43, 93)
g: (8, 58)
h: (26, 76)
m: (21, 71)
n1: (47, 97)
a1: (34, 84)
b1: (16, 66)
c1: (39, 89)
d1: (31, 81)
e1: (7, 57)
f1: (38, 88)
g1: (3, 53)
h1: (13, 63)
m1: (48, 98)
n2: (5, 55)
a2: (29, 79)
b2: (25, 75)
c2: (46, 96)
d2: (18, 68)
e2: (49, 99)
f2: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50)(51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100)
g2: (32, 82)
h2: (30, 80)
m2: (19, 69)
n3: (20, 70)
a3: (50, 100)
b3: (2, 52)
c3: (9, 59)
d3: (28, 78)
e3: (45, 95)
f3: (44, 94)
g3: (33, 83)
h3: (37, 87)
m3: (10, 60)
n4: (14, 64)
a4: (23, 73)
b4: (12, 62)
c4: (17, 67)
d4: (27, 77)
e4: (4, 54)
f4: (41, 91)
g4: (6, 56)
h4: (35, 85)
m4: (22, 72)
n5: (2, 50)(3, 49)(4, 48)(5, 47)(6, 46)(7, 45)(8, 44)(9, 43)(10, 42)(11, 41)(12,
40)(13, 39)(14, 38)(15, 37)(16, 36)(17, 35)(18, 34)(19, 33)(20, 32)(21, 31)(22,
30)(23, 29)(24, 28)(25, 27)(52, 100)(53, 99)(54, 98)(55, 97)(56, 96)(57, 95)(58,
94)(59, 93)(60, 92)(61, 91)(62, 90)(63, 89)(64, 88)(65, 87)(66, 86)(67, 85)(68,
84)(69, 83)(70, 82)(71, 81)(72, 80)(73, 79)(74, 78)(75, 77)
C4[ 100, 1 ]
100
-1 100 2 50 52
-2 1 3 51 53
-3 2 4 52 54
-4 55 3 5 53
-5 56 4 6 54
-6 55 57 5 7
-7 56 58 6 8
-8 57 59 7 9
-9 58 60 8 10
-10 11 59 61 9
-11 12 60 62 10
-12 11 13 61 63
-13 12 14 62 64
-14 13 15 63 65
-15 66 14 16 64
-16 67 15 17 65
-17 66 68 16 18
-18 67 69 17 19
-19 68 70 18 20
-20 69 71 19 21
-21 22 70 72 20
-22 23 71 73 21
-23 22 24 72 74
-24 23 25 73 75
-25 24 26 74 76
-26 77 25 27 75
-27 78 26 28 76
-28 77 79 27 29
-29 78 80 28 30
-30 79 81 29 31
-31 80 82 30 32
-32 33 81 83 31
-33 34 82 84 32
-34 33 35 83 85
-35 34 36 84 86
-36 35 37 85 87
-37 88 36 38 86
-38 89 37 39 87
-39 88 90 38 40
-40 89 91 39 41
-41 90 92 40 42
-42 91 93 41 43
-43 44 92 94 42
-44 45 93 95 43
-45 44 46 94 96
-46 45 47 95 97
-47 46 48 96 98
-48 99 47 49 97
-49 100 48 50 98
-50 99 1 49 51
-51 100 2 50 52
-52 1 3 51 53
-53 2 4 52 54
-54 55 3 5 53
-55 56 4 6 54
-56 55 57 5 7
-57 56 58 6 8
-58 57 59 7 9
-59 58 60 8 10
-60 11 59 61 9
-61 12 60 62 10
-62 11 13 61 63
-63 12 14 62 64
-64 13 15 63 65
-65 66 14 16 64
-66 67 15 17 65
-67 66 68 16 18
-68 67 69 17 19
-69 68 70 18 20
-70 69 71 19 21
-71 22 70 72 20
-72 23 71 73 21
-73 22 24 72 74
-74 23 25 73 75
-75 24 26 74 76
-76 77 25 27 75
-77 78 26 28 76
-78 77 79 27 29
-79 78 80 28 30
-80 79 81 29 31
-81 80 82 30 32
-82 33 81 83 31
-83 34 82 84 32
-84 33 35 83 85
-85 34 36 84 86
-86 35 37 85 87
-87 88 36 38 86
-88 89 37 39 87
-89 88 90 38 40
-90 89 91 39 41
-91 90 92 40 42
-92 91 93 41 43
-93 44 92 94 42
-94 45 93 95 43
-95 44 46 94 96
-96 45 47 95 97
-97 46 48 96 98
-98 99 47 49 97
-99 100 48 50 98
-100 99 1 49 51
0