[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 100, 8 ] =
AMC(4,5,[1.2:1.4]).
(I) Following is a form readable by MAGMA:
g:=Graph<100|{ {49, 51}, {24, 29}, {50, 52}, {25, 30}, {48, 55}, {68, 78}, {69,
79}, {23, 28}, {22, 27}, {66, 76}, {67, 77}, {21, 26}, {64, 79}, {65, 80}, {75,
90}, {73, 88}, {71, 86}, {69, 84}, {67, 82}, {33, 51}, {45, 63}, {44, 62}, {40,
58}, {66, 81}, {74, 89}, {70, 85}, {8, 28}, {11, 31}, {10, 30}, {9, 29}, {34,
52}, {71, 81}, {70, 80}, {43, 61}, {35, 53}, {32, 55}, {68, 83}, {37, 60}, {47,
54}, {72, 82}, {73, 83}, {46, 53}, {6, 26}, {7, 27}, {35, 62}, {1, 31}, {75,
85}, {74, 84}, {38, 56}, {39, 57}, {34, 61}, {72, 87}, {36, 59}, {26, 58}, {27,
59}, {28, 60}, {31, 63}, {2, 32}, {19, 49}, {18, 48}, {15, 45}, {14, 44}, {11,
41}, {10, 40}, {7, 37}, {6, 36}, {3, 33}, {64, 99}, {29, 56}, {65, 100}, {4,
34}, {13, 43}, {12, 42}, {5, 35}, {20, 50}, {30, 57}, {31, 54}, {12, 32}, {15,
35}, {14, 34}, {13, 33}, {2, 47}, {8, 38}, {9, 39}, {1, 46}, {3, 48}, {16, 36},
{19, 39}, {18, 38}, {17, 37}, {24, 44}, {25, 45}, {4, 49}, {5, 50}, {20, 40},
{21, 41}, {22, 42}, {23, 43}, {16, 46}, {17, 47}, {16, 80}, {21, 85}, {12, 78},
{17, 83}, {16, 82}, {13, 79}, {21, 87}, {24, 90}, {15, 76}, {20, 81}, {23, 82},
{11, 77}, {18, 84}, {19, 85}, {22, 81}, {24, 83}, {25, 84}, {22, 88}, {23, 89},
{25, 86}, {26, 74}, {27, 75}, {2, 86}, {10, 94}, {9, 93}, {8, 92}, {3, 87}, {29,
72}, {30, 73}, {56, 96}, {60, 100}, {59, 99}, {58, 98}, {57, 97}, {6, 95}, {1,
90}, {4, 95}, {20, 79}, {28, 71}, {4, 88}, {7, 91}, {5, 89}, {1, 92}, {63, 98},
{61, 96}, {17, 76}, {3, 94}, {19, 78}, {5, 91}, {14, 80}, {2, 93}, {62, 97},
{18, 77}, {32, 64}, {43, 75}, {42, 74}, {33, 65}, {36, 68}, {37, 69}, {38, 70},
{41, 73}, {52, 87}, {60, 95}, {56, 91}, {7, 98}, {59, 94}, {57, 92}, {51, 86},
{45, 72}, {39, 66}, {6, 97}, {58, 93}, {51, 91}, {55, 95}, {54, 94}, {53, 93},
{52, 92}, {41, 64}, {47, 70}, {10, 96}, {8, 99}, {46, 69}, {44, 71}, {40, 67},
{42, 65}, {12, 96}, {15, 99}, {14, 98}, {13, 97}, {9, 100}, {55, 90}, {53, 88},
{11, 100}, {54, 89}, {61, 76}, {63, 78}, {48, 66}, {49, 67}, {62, 77}, {50, 68}
}>;
(II) A more general form is to represent the graph as the orbit of {49, 51}
under the group generated by the following permutations:
a: (2, 7)(3, 13)(4, 19)(5, 25)(6, 21)(9, 14)(10, 20)(11, 16)(12, 22)(18, 23)(27,
32)(28, 38)(29, 44)(30, 50)(31, 46)(34, 39)(35, 45)(36, 41)(37, 47)(43, 48)(52,
57)(53, 63)(54, 69)(55, 75)(56, 71)(59, 64)(60, 70)(61, 66)(62, 72)(68, 73)(77,
82)(78, 88)(79, 94)(80, 100)(81, 96)(84, 89)(85, 95)(86, 91)(87, 97)(93, 98) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 3, 5, 4)(6, 17, 21, 15)(7, 19, 25, 13)(8, 16, 24, 11)(9, 18, 23, 14)(10,
20, 22, 12)(26, 76)(27, 78, 30, 79)(28, 80, 29, 77)(31, 92, 46, 90)(32, 94, 50,
88)(33, 91, 49, 86)(34, 93, 48, 89)(35, 95, 47, 87)(36, 83, 41, 99)(37, 85, 45,
97)(38, 82, 44, 100)(39, 84, 43, 98)(40, 81, 42, 96)(52, 53, 55, 54)(56, 67, 71,
65)(57, 69, 75, 63)(58, 66, 74, 61)(59, 68, 73, 64)(60, 70, 72, 62)
c: (1, 2)(3, 5)(6, 22)(7, 21)(8, 25)(9, 24)(10, 23)(11, 17)(12, 16)(13, 20)(14,
19)(15, 18)(26, 27)(28, 30)(31, 47)(32, 46)(33, 50)(34, 49)(35, 48)(36, 42)(37,
41)(38, 45)(39, 44)(40, 43)(51, 52)(53, 55)(56, 72)(57, 71)(58, 75)(59, 74)(60,
73)(61, 67)(62, 66)(63, 70)(64, 69)(65, 68)(76, 77)(78, 80)(81, 97)(82, 96)(83,
100)(84, 99)(85, 98)(86, 92)(87, 91)(88, 95)(89, 94)(90, 93)
d: (1, 26)(2, 34, 25, 43)(3, 37, 19, 35)(4, 45, 13, 47)(5, 48, 7, 39)(6, 31)(8,
42, 24, 40)(9, 50, 18, 27)(10, 28, 12, 44)(11, 36)(14, 30, 23, 32)(15, 33, 17,
49)(16, 41)(20, 38, 22, 29)(21, 46)(51, 76)(52, 84, 75, 93)(53, 87, 69, 85)(54,
95, 63, 97)(55, 98, 57, 89)(56, 81)(58, 92, 74, 90)(59, 100, 68, 77)(60, 78, 62,
94)(61, 86)(64, 80, 73, 82)(65, 83, 67, 99)(66, 91)(70, 88, 72, 79)(71, 96)
C4[ 100, 8 ]
100
-1 46 90 92 31
-2 47 93 86 32
-3 33 48 94 87
-4 88 34 49 95
-5 89 35 91 50
-6 36 26 95 97
-7 91 37 27 98
-8 99 92 38 28
-9 100 93 39 29
-10 94 40 30 96
-11 77 100 41 31
-12 78 96 42 32
-13 33 79 97 43
-14 44 34 80 98
-15 99 45 35 76
-16 46 36 80 82
-17 47 37 83 76
-18 77 48 38 84
-19 78 49 39 85
-20 79 81 50 40
-21 26 41 85 87
-22 88 81 27 42
-23 89 82 28 43
-24 44 90 83 29
-25 45 84 30 86
-26 58 6 74 21
-27 22 59 7 75
-28 23 60 71 8
-29 56 24 72 9
-30 57 25 73 10
-31 11 1 63 54
-32 55 12 2 64
-33 13 3 51 65
-34 14 4 61 52
-35 15 5 62 53
-36 68 59 16 6
-37 69 60 17 7
-38 56 70 18 8
-39 66 57 19 9
-40 67 58 20 10
-41 11 73 64 21
-42 22 12 74 65
-43 23 13 61 75
-44 24 14 71 62
-45 25 15 72 63
-46 1 69 16 53
-47 2 70 17 54
-48 55 66 3 18
-49 67 4 51 19
-50 68 5 52 20
-51 33 91 49 86
-52 34 92 50 87
-53 88 35 46 93
-54 89 47 94 31
-55 90 48 95 32
-56 91 38 29 96
-57 92 39 30 97
-58 26 93 40 98
-59 99 36 27 94
-60 100 37 28 95
-61 34 96 43 76
-62 44 77 35 97
-63 45 78 31 98
-64 99 79 41 32
-65 33 100 80 42
-66 48 81 39 76
-67 77 49 82 40
-68 78 36 50 83
-69 46 79 37 84
-70 47 80 38 85
-71 44 81 28 86
-72 45 82 29 87
-73 88 83 30 41
-74 89 26 84 42
-75 90 27 85 43
-76 66 15 17 61
-77 11 67 18 62
-78 12 68 19 63
-79 13 69 20 64
-80 14 70 16 65
-81 22 66 71 20
-82 23 67 16 72
-83 24 68 17 73
-84 25 69 18 74
-85 70 19 75 21
-86 2 25 71 51
-87 3 72 52 21
-88 22 4 73 53
-89 23 5 74 54
-90 55 1 24 75
-91 56 5 7 51
-92 1 57 8 52
-93 2 58 9 53
-94 3 59 10 54
-95 55 4 60 6
-96 12 56 61 10
-97 13 57 6 62
-98 14 58 7 63
-99 15 59 8 64
-100 11 60 9 65
0