[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 100, 11 ] =
SDD(C_25(1,7)).
(I) Following is a form readable by MAGMA:
g:=Graph<100|{ {34, 63}, {32, 62}, {33, 63}, {28, 60}, {29, 61}, {31, 63}, {26,
59}, {31, 62}, {24, 58}, {25, 59}, {29, 62}, {30, 61}, {25, 60}, {27, 61}, {16,
55}, {27, 60}, {17, 57}, {17, 56}, {18, 56}, {19, 56}, {21, 57}, {23, 59}, {18,
63}, {23, 58}, {20, 57}, {20, 58}, {22, 57}, {3, 51}, {5, 53}, {2, 51}, {15,
62}, {12, 61}, {5, 52}, {1, 51}, {6, 52}, {7, 52}, {1, 52}, {9, 60}, {14, 56},
{4, 51}, {2, 58}, {15, 55}, {14, 55}, {12, 54}, {13, 54}, {9, 53}, {11, 55}, {6,
59}, {11, 54}, {8, 53}, {8, 54}, {10, 53}, {16, 80}, {17, 81}, {28, 92}, {7,
70}, {26, 91}, {13, 79}, {24, 90}, {19, 81}, {12, 79}, {23, 84}, {18, 81}, {17,
82}, {30, 93}, {10, 78}, {23, 83}, {22, 82}, {11, 79}, {36, 96}, {13, 72}, {3,
69}, {20, 82}, {8, 78}, {8, 79}, {21, 82}, {20, 83}, {9, 78}, {31, 88}, {38,
97}, {4, 76}, {44, 100}, {5, 77}, {30, 86}, {31, 87}, {28, 85}, {42, 99}, {7,
77}, {40, 98}, {18, 88}, {29, 87}, {5, 78}, {24, 83}, {6, 77}, {29, 86}, {1,
77}, {21, 89}, {25, 85}, {1, 76}, {25, 84}, {10, 71}, {27, 86}, {2, 76}, {47,
97}, {46, 96}, {26, 84}, {27, 85}, {3, 76}, {47, 96}, {4, 75}, {2, 83}, {50,
99}, {48, 97}, {6, 84}, {49, 99}, {48, 98}, {49, 98}, {21, 64}, {50, 100}, {7,
95}, {15, 87}, {26, 66}, {16, 73}, {24, 65}, {19, 74}, {12, 86}, {30, 68}, {11,
80}, {9, 85}, {3, 94}, {22, 75}, {14, 80}, {14, 81}, {15, 80}, {28, 67}, {4,
100}, {42, 74}, {33, 64}, {40, 73}, {35, 65}, {35, 64}, {36, 71}, {34, 70}, {39,
67}, {36, 64}, {37, 65}, {32, 69}, {39, 66}, {37, 66}, {47, 72}, {44, 75}, {38,
65}, {44, 68}, {47, 71}, {46, 70}, {45, 69}, {42, 67}, {46, 71}, {10, 96}, {41,
67}, {40, 66}, {45, 70}, {13, 97}, {41, 68}, {38, 72}, {43, 69}, {43, 68}, {19,
99}, {44, 93}, {46, 95}, {16, 98}, {45, 95}, {22, 100}, {40, 91}, {45, 94}, {41,
93}, {41, 92}, {43, 94}, {42, 92}, {43, 93}, {32, 87}, {33, 89}, {50, 74}, {49,
73}, {48, 72}, {33, 88}, {50, 75}, {48, 73}, {35, 90}, {34, 88}, {35, 89}, {39,
92}, {49, 74}, {38, 90}, {39, 91}, {34, 95}, {36, 89}, {32, 94}, {37, 91}, {37,
90} }>;
(II) A more general form is to represent the graph as the orbit of {34, 63}
under the group generated by the following permutations:
a: (74, 99) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (71, 96)
c: (67, 92)
d: (75, 100)
e: (1, 2, 4, 3)(5, 24, 50, 32)(6, 20, 44, 45)(7, 23, 22, 43)(8, 38, 49, 15)(9,
35, 42, 31)(10, 37, 19, 29)(11, 13, 48, 16)(12, 47, 40, 14)(17, 30, 46, 26)(18,
27, 36, 39)(21, 41, 34, 25)(28, 33)(52, 58, 75, 69)(53, 65, 74, 62)(54, 72, 73,
55)(56, 61, 71, 66)(57, 68, 70, 59)(60, 64, 67, 63)(77, 83, 100, 94)(78, 90, 99,
87)(79, 97, 98, 80)(81, 86, 96, 91)(82, 93, 95, 84)(85, 89, 92, 88)
f: (55, 80)
g: (73, 98)
h: (53, 78)
m: (68, 93)
n1: (70, 95)
a1: (59, 84)
b1: (72, 97)
c1: (51, 76)
d1: (57, 82)
e1: (63, 88)
f1: (52, 77)
g1: (69, 94)
h1: (61, 86)
m1: (64, 89)
n2: (2, 7)(3, 6)(4, 5)(8, 50)(9, 44)(10, 22)(11, 49)(12, 42)(13, 19)(14, 48)(15,
40)(17, 47)(18, 38)(20, 46)(21, 36)(23, 45)(24, 34)(25, 43)(26, 32)(27, 41)(28,
30)(29, 39)(31, 37)(33, 35)(51, 52)(53, 75)(54, 74)(55, 73)(56, 72)(57, 71)(58,
70)(59, 69)(60, 68)(61, 67)(62, 66)(63, 65)(76, 77)(78, 100)(79, 99)(80, 98)(81,
97)(82, 96)(83, 95)(84, 94)(85, 93)(86, 92)(87, 91)(88, 90)
a2: (54, 79)
b2: (62, 87)
c2: (66, 91)
d2: (58, 83)
e2: (65, 90)
f2: (60, 85)
C4[ 100, 11 ]
100
-1 77 51 52 76
-2 58 83 51 76
-3 69 94 51 76
-4 100 51 75 76
-5 77 78 52 53
-6 77 59 84 52
-7 77 70 95 52
-8 78 79 53 54
-9 78 60 85 53
-10 78 71 96 53
-11 55 79 80 54
-12 79 61 86 54
-13 79 72 97 54
-14 55 56 80 81
-15 55 80 62 87
-16 55 80 73 98
-17 56 57 81 82
-18 88 56 81 63
-19 99 56 81 74
-20 57 58 82 83
-21 89 57 82 64
-22 100 57 82 75
-23 58 59 83 84
-24 90 58 83 65
-25 59 60 84 85
-26 66 91 59 84
-27 60 61 85 86
-28 67 92 60 85
-29 61 62 86 87
-30 68 93 61 86
-31 88 62 63 87
-32 69 94 62 87
-33 88 89 63 64
-34 88 70 95 63
-35 89 90 64 65
-36 89 71 96 64
-37 66 90 91 65
-38 90 72 97 65
-39 66 67 91 92
-40 66 91 73 98
-41 67 68 92 93
-42 99 67 92 74
-43 68 69 93 94
-44 100 68 93 75
-45 69 70 94 95
-46 70 71 95 96
-47 71 72 96 97
-48 72 73 97 98
-49 99 73 74 98
-50 99 100 74 75
-51 1 2 3 4
-52 1 5 6 7
-53 5 8 9 10
-54 11 12 13 8
-55 11 14 15 16
-56 14 17 18 19
-57 22 17 20 21
-58 23 2 24 20
-59 23 25 26 6
-60 25 27 28 9
-61 12 27 29 30
-62 15 29 31 32
-63 33 34 18 31
-64 33 35 36 21
-65 24 35 37 38
-66 26 37 39 40
-67 28 39 41 42
-68 44 30 41 43
-69 45 3 32 43
-70 34 45 46 7
-71 46 36 47 10
-72 13 47 48 38
-73 48 16 49 40
-74 49 50 19 42
-75 22 44 4 50
-76 1 2 3 4
-77 1 5 6 7
-78 5 8 9 10
-79 11 12 13 8
-80 11 14 15 16
-81 14 17 18 19
-82 22 17 20 21
-83 23 2 24 20
-84 23 25 26 6
-85 25 27 28 9
-86 12 27 29 30
-87 15 29 31 32
-88 33 34 18 31
-89 33 35 36 21
-90 24 35 37 38
-91 26 37 39 40
-92 28 39 41 42
-93 44 30 41 43
-94 45 3 32 43
-95 34 45 46 7
-96 46 36 47 10
-97 13 47 48 38
-98 48 16 49 40
-99 49 50 19 42
-100 22 44 4 50
0