[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 100, 12 ] =
SDD({4,4}_5,0).
(I) Following is a form readable by MAGMA:
g:=Graph<100|{ {32, 63}, {30, 62}, {31, 63}, {28, 61}, {29, 63}, {24, 59}, {29,
62}, {26, 62}, {25, 60}, {27, 61}, {26, 61}, {16, 56}, {16, 57}, {22, 63}, {19,
58}, {17, 56}, {18, 56}, {20, 62}, {19, 57}, {23, 60}, {22, 58}, {23, 59}, {17,
60}, {20, 57}, {21, 59}, {18, 61}, {21, 58}, {3, 51}, {5, 53}, {2, 51}, {5, 52},
{1, 51}, {14, 60}, {6, 52}, {7, 52}, {9, 58}, {1, 52}, {2, 55}, {4, 51}, {12,
59}, {15, 55}, {14, 55}, {12, 54}, {3, 56}, {13, 54}, {9, 53}, {11, 55}, {8,
53}, {11, 54}, {8, 54}, {6, 57}, {10, 53}, {17, 81}, {19, 83}, {16, 81}, {21,
84}, {19, 82}, {24, 89}, {27, 90}, {13, 79}, {16, 82}, {23, 85}, {30, 92}, {4,
71}, {23, 84}, {20, 87}, {18, 81}, {12, 79}, {10, 73}, {25, 90}, {10, 78}, {18,
86}, {17, 85}, {15, 75}, {11, 79}, {22, 83}, {29, 88}, {8, 78}, {38, 96}, {21,
83}, {20, 82}, {31, 89}, {8, 79}, {13, 74}, {9, 78}, {28, 91}, {31, 88}, {4,
76}, {42, 98}, {5, 77}, {30, 87}, {45, 100}, {40, 97}, {7, 77}, {28, 86}, {29,
87}, {5, 78}, {47, 100}, {6, 77}, {1, 77}, {24, 84}, {25, 85}, {26, 86}, {1,
76}, {26, 87}, {27, 86}, {2, 76}, {46, 96}, {22, 88}, {3, 76}, {47, 96}, {46,
97}, {44, 99}, {7, 72}, {48, 97}, {50, 99}, {2, 80}, {49, 99}, {48, 98}, {3,
81}, {49, 98}, {6, 82}, {50, 100}, {12, 84}, {24, 64}, {25, 65}, {9, 83}, {27,
65}, {11, 80}, {14, 85}, {30, 67}, {14, 80}, {28, 66}, {15, 80}, {31, 64}, {33,
65}, {40, 72}, {33, 64}, {38, 71}, {34, 64}, {35, 65}, {37, 70}, {42, 73}, {39,
68}, {4, 96}, {47, 75}, {39, 67}, {38, 66}, {32, 68}, {35, 70}, {7, 97}, {46,
72}, {45, 75}, {44, 74}, {36, 66}, {34, 69}, {36, 67}, {37, 66}, {10, 98}, {47,
71}, {44, 69}, {46, 71}, {15, 100}, {45, 70}, {40, 67}, {41, 69}, {41, 68}, {43,
70}, {13, 99}, {43, 69}, {42, 68}, {44, 94}, {45, 95}, {40, 92}, {43, 95}, {41,
93}, {43, 94}, {41, 94}, {42, 93}, {32, 88}, {50, 74}, {49, 73}, {48, 72}, {33,
89}, {36, 92}, {35, 90}, {50, 75}, {48, 73}, {37, 95}, {39, 93}, {33, 90}, {49,
74}, {39, 92}, {34, 89}, {34, 94}, {35, 95}, {32, 93}, {38, 91}, {37, 91}, {36,
91} }>;
(II) A more general form is to represent the graph as the orbit of {32, 63}
under the group generated by the following permutations:
a: (74, 99) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (71, 96)
c: (67, 92)
d: (75, 100)
e: (73, 98)
f: (55, 80)
g: (53, 78)
h: (1, 2, 11, 8, 5)(3, 14, 12, 9, 6)(4, 15, 13, 10, 7)(16, 17, 23, 21, 19)(18,
25, 24, 22, 20)(26, 27, 33, 31, 29)(28, 35, 34, 32, 30)(36, 37, 43, 41, 39)(38,
45, 44, 42, 40)(46, 47, 50, 49, 48)(51, 55, 54, 53, 52)(56, 60, 59, 58, 57)(61,
65, 64, 63, 62)(66, 70, 69, 68, 67)(71, 75, 74, 73, 72)(76, 80, 79, 78, 77)(81,
85, 84, 83, 82)(86, 90, 89, 88, 87)(91, 95, 94, 93, 92)(96, 100, 99, 98, 97)
m: (68, 93)
n1: (70, 95)
a1: (59, 84)
b1: (72, 97)
c1: (51, 76)
d1: (3, 4)(6, 7)(9, 10)(12, 13)(14, 15)(16, 46)(17, 47)(18, 38)(19, 48)(20,
40)(21, 49)(22, 42)(23, 50)(24, 44)(25, 45)(26, 36)(27, 37)(29, 39)(31, 41)(33,
43)(56, 71)(57, 72)(58, 73)(59, 74)(60, 75)(61, 66)(62, 67)(63, 68)(64, 69)(65,
70)(81, 96)(82, 97)(83, 98)(84, 99)(85, 100)(86, 91)(87, 92)(88, 93)(89, 94)(90,
95)
e1: (57, 82)
f1: (52, 77)
g1: (61, 86)
h1: (69, 94)
m1: (64, 89)
n2: (54, 79)
a2: (62, 87)
b2: (2, 5)(3, 6)(4, 7)(8, 11)(9, 14)(10, 15)(17, 19)(18, 20)(21, 23)(22, 25)(27,
29)(28, 30)(31, 33)(32, 35)(37, 39)(38, 40)(41, 43)(42, 45)(47, 48)(49, 50)(51,
52)(53, 55)(56, 57)(58, 60)(61, 62)(63, 65)(66, 67)(68, 70)(71, 72)(73, 75)(76,
77)(78, 80)(81, 82)(83, 85)(86, 87)(88, 90)(91, 92)(93, 95)(96, 97)(98, 100)
c2: (66, 91)
d2: (58, 83)
e2: (56, 81)
f2: (65, 90)
g2: (1, 3)(2, 4)(5, 18)(6, 16)(7, 17)(8, 28)(9, 26)(10, 27)(11, 38)(12, 36)(13,
37)(14, 46)(15, 47)(19, 20)(21, 30)(22, 29)(23, 40)(24, 39)(25, 48)(31, 32)(33,
42)(34, 41)(35, 49)(43, 44)(45, 50)(52, 56)(53, 61)(54, 66)(55, 71)(58, 62)(59,
67)(60, 72)(64, 68)(65, 73)(70, 74)(77, 81)(78, 86)(79, 91)(80, 96)(83, 87)(84,
92)(85, 97)(89, 93)(90, 98)(95, 99)
h2: (60, 85)
C4[ 100, 12 ]
100
-1 77 51 52 76
-2 55 80 51 76
-3 56 81 51 76
-4 71 51 96 76
-5 77 78 52 53
-6 77 57 82 52
-7 77 72 52 97
-8 78 79 53 54
-9 78 58 83 53
-10 78 73 53 98
-11 55 79 80 54
-12 79 59 84 54
-13 99 79 74 54
-14 55 80 60 85
-15 55 100 80 75
-16 56 57 81 82
-17 56 81 60 85
-18 56 81 61 86
-19 57 58 82 83
-20 57 82 62 87
-21 58 59 83 84
-22 88 58 83 63
-23 59 60 84 85
-24 89 59 84 64
-25 90 60 85 65
-26 61 62 86 87
-27 90 61 86 65
-28 66 91 61 86
-29 88 62 63 87
-30 67 92 62 87
-31 88 89 63 64
-32 88 68 93 63
-33 89 90 64 65
-34 89 69 94 64
-35 90 70 95 65
-36 66 67 91 92
-37 66 91 70 95
-38 66 91 71 96
-39 67 68 92 93
-40 67 92 72 97
-41 68 69 93 94
-42 68 93 73 98
-43 69 70 94 95
-44 99 69 94 74
-45 100 70 95 75
-46 71 72 96 97
-47 100 71 96 75
-48 72 73 97 98
-49 99 73 74 98
-50 99 100 74 75
-51 1 2 3 4
-52 1 5 6 7
-53 5 8 9 10
-54 11 12 13 8
-55 11 2 14 15
-56 3 16 17 18
-57 16 6 19 20
-58 22 19 9 21
-59 12 23 24 21
-60 23 14 25 17
-61 26 27 28 18
-62 26 29 30 20
-63 22 29 31 32
-64 33 34 24 31
-65 33 35 25 27
-66 36 37 38 28
-67 36 39 40 30
-68 39 41 42 32
-69 44 34 41 43
-70 45 35 37 43
-71 46 47 4 38
-72 46 48 7 40
-73 48 49 42 10
-74 44 13 49 50
-75 45 47 15 50
-76 1 2 3 4
-77 1 5 6 7
-78 5 8 9 10
-79 11 12 13 8
-80 11 2 14 15
-81 3 16 17 18
-82 16 6 19 20
-83 22 19 9 21
-84 12 23 24 21
-85 23 14 25 17
-86 26 27 28 18
-87 26 29 30 20
-88 22 29 31 32
-89 33 34 24 31
-90 33 35 25 27
-91 36 37 38 28
-92 36 39 40 30
-93 39 41 42 32
-94 44 34 41 43
-95 45 35 37 43
-96 46 47 4 38
-97 46 48 7 40
-98 48 49 42 10
-99 44 13 49 50
-100 45 47 15 50
0