[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 101, 1 ] =
C_101(1,10).
(I) Following is a form readable by MAGMA:
g:=Graph<101|{ {2, 3}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90,
91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74,
75}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28,
29}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{20, 21}, {22, 23}, {24, 25}, {26, 27}, {44, 45}, {46, 47}, {48, 49}, {50, 51},
{52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67},
{68, 69}, {70, 71}, {72, 73}, {1, 2}, {97, 98}, {93, 94}, {89, 90}, {85, 86},
{81, 82}, {77, 78}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10},
{13, 14}, {17, 18}, {21, 22}, {25, 26}, {45, 46}, {49, 50}, {53, 54}, {57, 58},
{61, 62}, {65, 66}, {69, 70}, {73, 74}, {3, 4}, {99, 100}, {91, 92}, {83, 84},
{75, 76}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {51, 52}, {59, 60},
{67, 68}, {1, 11}, {85, 95}, {84, 94}, {81, 91}, {80, 90}, {37, 47}, {36, 46},
{33, 43}, {32, 42}, {4, 14}, {5, 15}, {16, 26}, {17, 27}, {20, 30}, {21, 31},
{48, 58}, {49, 59}, {52, 62}, {53, 63}, {64, 74}, {65, 75}, {68, 78}, {69, 79},
{2, 12}, {83, 93}, {82, 92}, {35, 45}, {34, 44}, {3, 13}, {18, 28}, {19, 29},
{50, 60}, {51, 61}, {66, 76}, {67, 77}, {7, 8}, {87, 88}, {39, 40}, {23, 24},
{55, 56}, {71, 72}, {6, 16}, {79, 89}, {78, 88}, {39, 49}, {38, 48}, {7, 17},
{14, 24}, {15, 25}, {46, 56}, {47, 57}, {70, 80}, {71, 81}, {8, 18}, {77, 87},
{76, 86}, {41, 51}, {40, 50}, {9, 19}, {12, 22}, {13, 23}, {44, 54}, {45, 55},
{72, 82}, {73, 83}, {10, 20}, {75, 85}, {74, 84}, {43, 53}, {42, 52}, {11, 21},
{15, 16}, {79, 80}, {47, 48}, {22, 32}, {87, 97}, {86, 96}, {31, 41}, {30, 40},
{23, 33}, {24, 34}, {89, 99}, {88, 98}, {29, 39}, {28, 38}, {25, 35}, {26, 36},
{91, 101}, {90, 100}, {27, 37}, {31, 32}, {95, 96}, {4, 95}, {1, 92}, {3, 94},
{2, 93}, {1, 101}, {5, 96}, {7, 98}, {6, 97}, {8, 99}, {9, 100}, {10, 101}, {54,
64}, {55, 65}, {62, 72}, {63, 73}, {56, 66}, {57, 67}, {60, 70}, {61, 71}, {58,
68}, {59, 69}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 92, 101, 11)(3, 82, 100, 21)(4, 72, 99, 31)(5, 62, 98, 41)(6, 52, 97,
51)(7, 42, 96, 61)(8, 32, 95, 71)(9, 22, 94, 81)(10, 12, 93, 91)(13, 83, 90,
20)(14, 73, 89, 30)(15, 63, 88, 40)(16, 53, 87, 50)(17, 43, 86, 60)(18, 33, 85,
70)(19, 23, 84, 80)(24, 74, 79, 29)(25, 64, 78, 39)(26, 54, 77, 49)(27, 44, 76,
59)(28, 34, 75, 69)(35, 65, 68, 38)(36, 55, 67, 48)(37, 45, 66, 58)(46, 56, 57,
47)
C4[ 101, 1 ]
101
-1 11 2 101 92
-2 1 12 3 93
-3 2 13 4 94
-4 3 14 5 95
-5 4 15 6 96
-6 5 16 7 97
-7 6 17 8 98
-8 99 7 18 9
-9 100 8 19 10
-10 11 101 9 20
-11 1 12 10 21
-12 11 22 2 13
-13 12 23 3 14
-14 13 24 4 15
-15 14 25 5 16
-16 15 26 6 17
-17 16 27 7 18
-18 17 28 8 19
-19 18 29 9 20
-20 19 30 10 21
-21 11 22 20 31
-22 12 23 21 32
-23 22 33 13 24
-24 23 34 14 25
-25 24 35 15 26
-26 25 36 16 27
-27 26 37 17 28
-28 27 38 18 29
-29 28 39 19 30
-30 29 40 20 31
-31 30 41 21 32
-32 22 33 31 42
-33 23 34 32 43
-34 33 44 24 35
-35 34 45 25 36
-36 35 46 26 37
-37 36 47 27 38
-38 37 48 28 39
-39 38 49 29 40
-40 39 50 30 41
-41 40 51 31 42
-42 41 52 32 43
-43 33 44 42 53
-44 34 45 43 54
-45 44 55 35 46
-46 45 56 36 47
-47 46 57 37 48
-48 47 58 38 49
-49 48 59 39 50
-50 49 60 40 51
-51 50 61 41 52
-52 51 62 42 53
-53 52 63 43 54
-54 44 55 53 64
-55 45 56 54 65
-56 55 66 46 57
-57 56 67 47 58
-58 57 68 48 59
-59 58 69 49 60
-60 59 70 50 61
-61 60 71 51 62
-62 61 72 52 63
-63 62 73 53 64
-64 63 74 54 65
-65 55 66 64 75
-66 56 67 65 76
-67 66 77 57 68
-68 67 78 58 69
-69 68 79 59 70
-70 69 80 60 71
-71 70 81 61 72
-72 71 82 62 73
-73 72 83 63 74
-74 73 84 64 75
-75 74 85 65 76
-76 66 77 75 86
-77 67 78 76 87
-78 77 88 68 79
-79 78 89 69 80
-80 79 90 70 81
-81 80 91 71 82
-82 81 92 72 83
-83 82 93 73 84
-84 83 94 74 85
-85 84 95 75 86
-86 85 96 76 87
-87 77 88 86 97
-88 78 89 87 98
-89 88 99 79 90
-90 89 100 80 91
-91 90 101 81 92
-92 1 91 82 93
-93 2 92 83 94
-94 3 93 84 95
-95 4 94 85 96
-96 5 95 86 97
-97 6 96 87 98
-98 88 99 7 97
-99 89 100 8 98
-100 99 90 101 9
-101 1 100 91 10
0