[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 102, 1 ] =
W(51,2).
(I) Following is a form readable by MAGMA:
g:=Graph<102|{ {2, 3}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90,
91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74,
75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58,
59}, {56, 57}, {54, 55}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {20,
21}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47},
{48, 49}, {50, 51}, {52, 53}, {1, 2}, {101, 102}, {97, 98}, {93, 94}, {89, 90},
{85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58},
{53, 54}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18},
{33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {3, 4}, {99, 100}, {91, 92},
{83, 84}, {75, 76}, {67, 68}, {59, 60}, {27, 28}, {11, 12}, {19, 20}, {35, 36},
{43, 44}, {51, 52}, {7, 8}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40},
{15, 16}, {79, 80}, {47, 48}, {1, 51}, {4, 54}, {5, 55}, {8, 58}, {9, 59}, {12,
62}, {13, 63}, {1, 53}, {2, 54}, {3, 55}, {8, 60}, {9, 61}, {10, 62}, {11, 63},
{2, 52}, {3, 53}, {10, 60}, {11, 61}, {4, 56}, {5, 57}, {6, 58}, {7, 59}, {6,
56}, {7, 57}, {31, 32}, {95, 96}, {12, 64}, {30, 82}, {29, 81}, {28, 80}, {13,
65}, {14, 66}, {15, 67}, {31, 83}, {44, 96}, {45, 97}, {46, 98}, {47, 99}, {14,
64}, {31, 81}, {30, 80}, {15, 65}, {46, 96}, {47, 97}, {16, 66}, {52, 102}, {29,
79}, {28, 78}, {25, 75}, {24, 74}, {21, 71}, {20, 70}, {17, 67}, {48, 98}, {49,
99}, {16, 68}, {27, 79}, {26, 78}, {25, 77}, {24, 76}, {17, 69}, {18, 70}, {19,
71}, {48, 100}, {49, 101}, {50, 102}, {18, 68}, {27, 77}, {26, 76}, {19, 69},
{50, 100}, {51, 101}, {20, 72}, {23, 75}, {22, 74}, {21, 73}, {22, 72}, {23,
73}, {1, 102}, {32, 82}, {33, 83}, {36, 86}, {37, 87}, {40, 90}, {41, 91}, {44,
94}, {45, 95}, {32, 84}, {33, 85}, {34, 86}, {35, 87}, {40, 92}, {41, 93}, {42,
94}, {43, 95}, {34, 84}, {35, 85}, {42, 92}, {43, 93}, {36, 88}, {37, 89}, {38,
90}, {39, 91}, {38, 88}, {39, 89}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (14, 65) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (26, 77)
c: (18, 69)
d: (33, 84)
e: (49, 100)
f: (24, 75)
g: (30, 81)
h: (9, 60)
m: (13, 64)
n1: (29, 80)
a1: (19, 70)
b1: (38, 89)
c1: (10, 61)
d1: (20, 71)
e1: (43, 94)
f1: (47, 98)
g1: (45, 96)
h1: (46, 97)
m1: (22, 73)
n2: (37, 88)
a2: (27, 78)
b2: (31, 82)
c2: (40, 91)
d2: (15, 66)
e2: (50, 101)
f2: (51, 102)
g2: (32, 83)
h2: (39, 90)
m2: (3, 54)
n3: (44, 95)
a3: (4, 55)
b3: (17, 68)
c3: (8, 59)
d3: (35, 86)
e3: (41, 92)
f3: (5, 56)
g3: (12, 63)
h3: (16, 67)
m3: (2, 53)
n4: (36, 87)
a4: (23, 74)
b4: (28, 79)
c4: (34, 85)
d4: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51)(52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102)
e4: (11, 62)
f4: (2, 51)(3, 50)(4, 49)(5, 48)(6, 47)(7, 46)(8, 45)(9, 44)(10, 43)(11, 42)(12,
41)(13, 40)(14, 39)(15, 38)(16, 37)(17, 36)(18, 35)(19, 34)(20, 33)(21, 32)(22,
31)(23, 30)(24, 29)(25, 28)(26, 27)(53, 102)(54, 101)(55, 100)(56, 99)(57,
98)(58, 97)(59, 96)(60, 95)(61, 94)(62, 93)(63, 92)(64, 91)(65, 90)(66, 89)(67,
88)(68, 87)(69, 86)(70, 85)(71, 84)(72, 83)(73, 82)(74, 81)(75, 80)(76, 79)(77,
78)
g4: (7, 58)
h4: (42, 93)
m4: (48, 99)
n5: (21, 72)
a5: (6, 57)
C4[ 102, 1 ]
102
-1 2 102 51 53
-2 1 3 52 54
-3 55 2 4 53
-4 56 3 5 54
-5 55 57 4 6
-6 56 58 5 7
-7 57 59 6 8
-8 58 60 7 9
-9 59 61 8 10
-10 11 60 62 9
-11 12 61 63 10
-12 11 13 62 64
-13 12 14 63 65
-14 66 13 15 64
-15 67 14 16 65
-16 66 68 15 17
-17 67 69 16 18
-18 68 70 17 19
-19 69 71 18 20
-20 70 72 19 21
-21 22 71 73 20
-22 23 72 74 21
-23 22 24 73 75
-24 23 25 74 76
-25 77 24 26 75
-26 78 25 27 76
-27 77 79 26 28
-28 78 80 27 29
-29 79 81 28 30
-30 80 82 29 31
-31 81 83 30 32
-32 33 82 84 31
-33 34 83 85 32
-34 33 35 84 86
-35 34 36 85 87
-36 88 35 37 86
-37 89 36 38 87
-38 88 90 37 39
-39 89 91 38 40
-40 90 92 39 41
-41 91 93 40 42
-42 92 94 41 43
-43 44 93 95 42
-44 45 94 96 43
-45 44 46 95 97
-46 45 47 96 98
-47 99 46 48 97
-48 100 47 49 98
-49 99 101 48 50
-50 100 102 49 51
-51 1 101 50 52
-52 2 102 51 53
-53 1 3 52 54
-54 55 2 4 53
-55 56 3 5 54
-56 55 57 4 6
-57 56 58 5 7
-58 57 59 6 8
-59 58 60 7 9
-60 59 61 8 10
-61 11 60 62 9
-62 12 61 63 10
-63 11 13 62 64
-64 12 14 63 65
-65 66 13 15 64
-66 67 14 16 65
-67 66 68 15 17
-68 67 69 16 18
-69 68 70 17 19
-70 69 71 18 20
-71 70 72 19 21
-72 22 71 73 20
-73 23 72 74 21
-74 22 24 73 75
-75 23 25 74 76
-76 77 24 26 75
-77 78 25 27 76
-78 77 79 26 28
-79 78 80 27 29
-80 79 81 28 30
-81 80 82 29 31
-82 81 83 30 32
-83 33 82 84 31
-84 34 83 85 32
-85 33 35 84 86
-86 34 36 85 87
-87 88 35 37 86
-88 89 36 38 87
-89 88 90 37 39
-90 89 91 38 40
-91 90 92 39 41
-92 91 93 40 42
-93 92 94 41 43
-94 44 93 95 42
-95 45 94 96 43
-96 44 46 95 97
-97 45 47 96 98
-98 99 46 48 97
-99 100 47 49 98
-100 99 101 48 50
-101 100 102 49 51
-102 1 101 50 52
0