[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 102, 2 ] =
C_102(1,35).
(I) Following is a form readable by MAGMA:
g:=Graph<102|{ {2, 3}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90,
91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74,
75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {32, 33}, {30,
31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {34, 35}, {36, 37}, {38, 39},
{40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55},
{56, 57}, {58, 59}, {60, 61}, {1, 2}, {101, 102}, {97, 98}, {93, 94}, {89, 90},
{85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {29, 30},
{25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {33, 34}, {37, 38},
{41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {3, 4}, {99, 100}, {91, 92},
{83, 84}, {75, 76}, {67, 68}, {27, 28}, {11, 12}, {19, 20}, {35, 36}, {43, 44},
{51, 52}, {59, 60}, {7, 8}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56},
{15, 16}, {79, 80}, {47, 48}, {4, 39}, {64, 99}, {28, 63}, {24, 59}, {8, 43},
{12, 47}, {16, 51}, {20, 55}, {1, 36}, {67, 102}, {65, 100}, {27, 62}, {25, 60},
{3, 38}, {9, 44}, {11, 46}, {17, 52}, {19, 54}, {2, 37}, {66, 101}, {26, 61},
{10, 45}, {18, 53}, {5, 40}, {23, 58}, {21, 56}, {7, 42}, {6, 41}, {22, 57},
{13, 48}, {15, 50}, {14, 49}, {95, 96}, {31, 32}, {4, 71}, {32, 99}, {28, 95},
{24, 91}, {8, 75}, {12, 79}, {16, 83}, {20, 87}, {1, 68}, {27, 94}, {25, 92},
{3, 70}, {9, 76}, {11, 78}, {17, 84}, {19, 86}, {33, 100}, {35, 102}, {2, 69},
{26, 93}, {10, 77}, {18, 85}, {34, 101}, {5, 72}, {23, 90}, {21, 88}, {7, 74},
{6, 73}, {22, 89}, {13, 80}, {63, 98}, {61, 96}, {31, 66}, {29, 64}, {15, 82},
{14, 81}, {62, 97}, {30, 65}, {32, 67}, {36, 71}, {40, 75}, {44, 79}, {48, 83},
{52, 87}, {56, 91}, {60, 95}, {33, 68}, {35, 70}, {41, 76}, {43, 78}, {49, 84},
{51, 86}, {57, 92}, {59, 94}, {1, 102}, {34, 69}, {42, 77}, {50, 85}, {58, 93},
{37, 72}, {39, 74}, {53, 88}, {55, 90}, {38, 73}, {54, 89}, {29, 96}, {31, 98},
{45, 80}, {47, 82}, {30, 97}, {63, 64}, {46, 81} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 36)(3, 71)(5, 39)(6, 74)(8, 42)(9, 77)(11, 45)(12, 80)(14, 48)(15,
83)(17, 51)(18, 86)(20, 54)(21, 89)(23, 57)(24, 92)(26, 60)(27, 95)(29, 63)(30,
98)(32, 66)(33, 101)(35, 69)(38, 72)(41, 75)(44, 78)(47, 81)(50, 84)(53, 87)(56,
90)(59, 93)(62, 96)(65, 99)(68, 102) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102)
c: (2, 68)(3, 33)(4, 100)(5, 65)(6, 30)(7, 97)(8, 62)(9, 27)(10, 94)(11, 59)(12,
24)(13, 91)(14, 56)(15, 21)(16, 88)(17, 53)(19, 85)(20, 50)(22, 82)(23, 47)(25,
79)(26, 44)(28, 76)(29, 41)(31, 73)(32, 38)(34, 70)(36, 102)(37, 67)(39, 99)(40,
64)(42, 96)(43, 61)(45, 93)(46, 58)(48, 90)(49, 55)(51, 87)(54, 84)(57, 81)(60,
78)(63, 75)(66, 72)(71, 101)(74, 98)(77, 95)(80, 92)(83, 89)
C4[ 102, 2 ]
102
-1 2 68 36 102
-2 1 3 69 37
-3 2 4 70 38
-4 3 5 71 39
-5 4 6 72 40
-6 5 7 73 41
-7 6 8 74 42
-8 7 9 75 43
-9 44 8 10 76
-10 11 77 45 9
-11 12 78 46 10
-12 11 13 79 47
-13 12 14 80 48
-14 13 15 81 49
-15 14 16 82 50
-16 15 17 83 51
-17 16 18 84 52
-18 17 19 85 53
-19 18 20 86 54
-20 55 19 21 87
-21 22 88 56 20
-22 23 89 57 21
-23 22 24 90 58
-24 23 25 91 59
-25 24 26 92 60
-26 25 27 93 61
-27 26 28 94 62
-28 27 29 95 63
-29 28 30 96 64
-30 29 31 97 65
-31 66 30 32 98
-32 33 99 67 31
-33 34 100 68 32
-34 33 35 101 69
-35 34 36 102 70
-36 1 35 37 71
-37 2 36 38 72
-38 3 37 39 73
-39 4 38 40 74
-40 5 39 41 75
-41 6 40 42 76
-42 77 7 41 43
-43 44 78 8 42
-44 45 79 9 43
-45 44 46 80 10
-46 11 45 47 81
-47 12 46 48 82
-48 13 47 49 83
-49 14 48 50 84
-50 15 49 51 85
-51 16 50 52 86
-52 17 51 53 87
-53 88 18 52 54
-54 55 89 19 53
-55 56 90 20 54
-56 55 57 91 21
-57 22 56 58 92
-58 23 57 59 93
-59 24 58 60 94
-60 25 59 61 95
-61 26 60 62 96
-62 27 61 63 97
-63 28 62 64 98
-64 99 29 63 65
-65 66 100 30 64
-66 67 101 31 65
-67 66 68 102 32
-68 33 1 67 69
-69 34 2 68 70
-70 35 3 69 71
-71 36 4 70 72
-72 37 5 71 73
-73 38 6 72 74
-74 39 7 73 75
-75 40 8 74 76
-76 77 41 9 75
-77 78 42 10 76
-78 11 77 79 43
-79 44 12 78 80
-80 45 13 79 81
-81 46 14 80 82
-82 47 15 81 83
-83 48 16 82 84
-84 49 17 83 85
-85 50 18 84 86
-86 51 19 85 87
-87 88 52 20 86
-88 89 53 21 87
-89 22 88 90 54
-90 55 23 89 91
-91 56 24 90 92
-92 57 25 91 93
-93 58 26 92 94
-94 59 27 93 95
-95 60 28 94 96
-96 61 29 95 97
-97 62 30 96 98
-98 99 63 31 97
-99 100 64 32 98
-100 33 99 101 65
-101 66 34 100 102
-102 1 67 35 101
0