[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 104, 1 ] =
W(52,2).
(I) Following is a form readable by MAGMA:
g:=Graph<104|{ {2, 3}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95},
{92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79},
{76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63},
{60, 61}, {58, 59}, {56, 57}, {54, 55}, {32, 33}, {30, 31}, {28, 29}, {26, 27},
{24, 25}, {22, 23}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16,
17}, {18, 19}, {20, 21}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44,
45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {1, 2}, {101, 102}, {97, 98}, {93,
94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61,
62}, {57, 58}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21,
22}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {3, 4}, {99,
100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {27, 28}, {11, 12}, {19,
20}, {35, 36}, {43, 44}, {51, 52}, {7, 8}, {103, 104}, {87, 88}, {71, 72}, {55,
56}, {23, 24}, {39, 40}, {15, 16}, {79, 80}, {47, 48}, {4, 55}, {8, 59}, {12,
63}, {1, 52}, {2, 55}, {3, 54}, {8, 61}, {9, 60}, {10, 63}, {11, 62}, {1, 54},
{2, 53}, {9, 62}, {10, 61}, {3, 56}, {7, 60}, {4, 57}, {5, 56}, {6, 59}, {7,
58}, {5, 58}, {95, 96}, {31, 32}, {6, 57}, {11, 64}, {31, 84}, {27, 80}, {15,
68}, {43, 96}, {47, 100}, {12, 65}, {31, 82}, {30, 83}, {29, 80}, {28, 81}, {13,
64}, {14, 67}, {15, 66}, {44, 97}, {45, 96}, {46, 99}, {47, 98}, {13, 66}, {30,
81}, {29, 82}, {14, 65}, {45, 98}, {46, 97}, {16, 67}, {28, 79}, {24, 75}, {20,
71}, {48, 99}, {52, 103}, {16, 69}, {27, 78}, {26, 79}, {25, 76}, {24, 77}, {17,
68}, {18, 71}, {19, 70}, {48, 101}, {49, 100}, {50, 103}, {51, 102}, {17, 70},
{26, 77}, {25, 78}, {18, 69}, {49, 102}, {50, 101}, {19, 72}, {23, 76}, {51,
104}, {20, 73}, {53, 104}, {23, 74}, {22, 75}, {21, 72}, {21, 74}, {22, 73}, {1,
104}, {32, 83}, {36, 87}, {40, 91}, {44, 95}, {32, 85}, {33, 84}, {34, 87}, {35,
86}, {40, 93}, {41, 92}, {42, 95}, {43, 94}, {33, 86}, {34, 85}, {41, 94}, {42,
93}, {35, 88}, {39, 92}, {36, 89}, {37, 88}, {38, 91}, {39, 90}, {37, 90}, {63,
64}, {38, 89} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (47, 99) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (16, 68)
c: (26, 78)
d: (3, 55)
e: (51, 103)
f: (20, 72)
g: (38, 90)
h: (37, 89)
m: (44, 96)
n1: (36, 88)
a1: (48, 100)
b1: (13, 65)
c1: (43, 95)
d1: (35, 87)
e1: (7, 59)
f1: (27, 79)
g1: (41, 93)
h1: (50, 102)
m1: (19, 71)
n2: (30, 82)
a2: (6, 58)
b2: (5, 57)
c2: (17, 69)
d2: (52, 104)
e2: (10, 62)
f2: (2, 52)(3, 51)(4, 50)(5, 49)(6, 48)(7, 47)(8, 46)(9, 45)(10, 44)(11, 43)(12,
42)(13, 41)(14, 40)(15, 39)(16, 38)(17, 37)(18, 36)(19, 35)(20, 34)(21, 33)(22,
32)(23, 31)(24, 30)(25, 29)(26, 28)(54, 104)(55, 103)(56, 102)(57, 101)(58,
100)(59, 99)(60, 98)(61, 97)(62, 96)(63, 95)(64, 94)(65, 93)(66, 92)(67, 91)(68,
90)(69, 89)(70, 88)(71, 87)(72, 86)(73, 85)(74, 84)(75, 83)(76, 82)(77, 81)(78,
80)
g2: (11, 63)
h2: (49, 101)
m2: (18, 70)
n3: (23, 75)
a3: (45, 97)
b3: (14, 66)
c3: (2, 54)
d3: (29, 81)
e3: (32, 84)
f3: (28, 80)
g3: (24, 76)
h3: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52)(53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104)
m3: (31, 83)
n4: (46, 98)
a4: (15, 67)
b4: (40, 92)
c4: (8, 60)
d4: (39, 91)
e4: (42, 94)
f4: (34, 86)
g4: (22, 74)
h4: (9, 61)
m4: (33, 85)
n5: (21, 73)
a5: (12, 64)
b5: (4, 56)
C4[ 104, 1 ]
104
-1 2 104 52 54
-2 55 1 3 53
-3 56 2 4 54
-4 55 57 3 5
-5 56 58 4 6
-6 57 59 5 7
-7 58 60 6 8
-8 59 61 7 9
-9 60 62 8 10
-10 11 61 63 9
-11 12 62 64 10
-12 11 13 63 65
-13 66 12 14 64
-14 67 13 15 65
-15 66 68 14 16
-16 67 69 15 17
-17 68 70 16 18
-18 69 71 17 19
-19 70 72 18 20
-20 71 73 19 21
-21 22 72 74 20
-22 23 73 75 21
-23 22 24 74 76
-24 77 23 25 75
-25 78 24 26 76
-26 77 79 25 27
-27 78 80 26 28
-28 79 81 27 29
-29 80 82 28 30
-30 81 83 29 31
-31 82 84 30 32
-32 33 83 85 31
-33 34 84 86 32
-34 33 35 85 87
-35 88 34 36 86
-36 89 35 37 87
-37 88 90 36 38
-38 89 91 37 39
-39 90 92 38 40
-40 91 93 39 41
-41 92 94 40 42
-42 93 95 41 43
-43 44 94 96 42
-44 45 95 97 43
-45 44 46 96 98
-46 99 45 47 97
-47 100 46 48 98
-48 99 101 47 49
-49 100 102 48 50
-50 101 103 49 51
-51 102 104 50 52
-52 1 103 51 53
-53 2 104 52 54
-54 55 1 3 53
-55 56 2 4 54
-56 55 57 3 5
-57 56 58 4 6
-58 57 59 5 7
-59 58 60 6 8
-60 59 61 7 9
-61 60 62 8 10
-62 11 61 63 9
-63 12 62 64 10
-64 11 13 63 65
-65 66 12 14 64
-66 67 13 15 65
-67 66 68 14 16
-68 67 69 15 17
-69 68 70 16 18
-70 69 71 17 19
-71 70 72 18 20
-72 71 73 19 21
-73 22 72 74 20
-74 23 73 75 21
-75 22 24 74 76
-76 77 23 25 75
-77 78 24 26 76
-78 77 79 25 27
-79 78 80 26 28
-80 79 81 27 29
-81 80 82 28 30
-82 81 83 29 31
-83 82 84 30 32
-84 33 83 85 31
-85 34 84 86 32
-86 33 35 85 87
-87 88 34 36 86
-88 89 35 37 87
-89 88 90 36 38
-90 89 91 37 39
-91 90 92 38 40
-92 91 93 39 41
-93 92 94 40 42
-94 93 95 41 43
-95 44 94 96 42
-96 45 95 97 43
-97 44 46 96 98
-98 99 45 47 97
-99 100 46 48 98
-100 99 101 47 49
-101 100 102 48 50
-102 101 103 49 51
-103 102 104 50 52
-104 1 103 51 53
0