[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 104, 2 ] =
C_104(1,25).
(I) Following is a form readable by MAGMA:
g:=Graph<104|{ {2, 3}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95},
{92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79},
{76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {36, 37}, {34, 35}, {32, 33},
{30, 31}, {28, 29}, {26, 27}, {24, 25}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12,
13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {38, 39}, {40, 41}, {42,
43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58,
59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {1, 2}, {101, 102}, {97, 98}, {93,
94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {33, 34}, {29,
30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {37, 38}, {41,
42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {3, 4}, {99,
100}, {91, 92}, {83, 84}, {75, 76}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {43,
44}, {51, 52}, {59, 60}, {67, 68}, {7, 8}, {103, 104}, {87, 88}, {71, 72}, {23,
24}, {39, 40}, {55, 56}, {2, 27}, {70, 95}, {68, 93}, {36, 61}, {34, 59}, {32,
57}, {4, 29}, {6, 31}, {38, 63}, {64, 89}, {66, 91}, {1, 26}, {69, 94}, {33,
58}, {5, 30}, {37, 62}, {65, 90}, {3, 28}, {79, 80}, {67, 92}, {35, 60}, {15,
16}, {47, 48}, {7, 32}, {79, 104}, {71, 96}, {31, 56}, {23, 48}, {15, 40}, {8,
33}, {78, 103}, {76, 101}, {74, 99}, {72, 97}, {30, 55}, {28, 53}, {26, 51},
{24, 49}, {10, 35}, {12, 37}, {14, 39}, {9, 34}, {77, 102}, {73, 98}, {29, 54},
{25, 50}, {13, 38}, {11, 36}, {75, 100}, {27, 52}, {16, 41}, {22, 47}, {18, 43},
{20, 45}, {17, 42}, {21, 46}, {19, 44}, {95, 96}, {31, 32}, {16, 95}, {1, 80},
{3, 82}, {5, 84}, {7, 86}, {9, 88}, {11, 90}, {13, 92}, {15, 94}, {2, 81}, {6,
85}, {10, 89}, {14, 93}, {4, 83}, {12, 91}, {8, 87}, {39, 64}, {47, 72}, {55,
80}, {63, 88}, {1, 104}, {40, 65}, {42, 67}, {44, 69}, {46, 71}, {56, 81}, {58,
83}, {60, 85}, {62, 87}, {41, 66}, {45, 70}, {57, 82}, {61, 86}, {43, 68}, {59,
84}, {17, 96}, {25, 104}, {23, 102}, {19, 98}, {21, 100}, {18, 97}, {22, 101},
{20, 99}, {48, 73}, {50, 75}, {52, 77}, {54, 79}, {49, 74}, {53, 78}, {24, 103},
{51, 76}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 80)(3, 55)(4, 30)(6, 84)(7, 59)(8, 34)(10, 88)(11, 63)(12, 38)(14,
92)(15, 67)(16, 42)(18, 96)(19, 71)(20, 46)(22, 100)(23, 75)(24, 50)(26,
104)(27, 79)(28, 54)(31, 83)(32, 58)(35, 87)(36, 62)(39, 91)(40, 66)(43, 95)(44,
70)(47, 99)(48, 74)(51, 103)(52, 78)(56, 82)(60, 86)(64, 90)(68, 94)(72, 98)(76,
102) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 26)(3, 51)(4, 76)(5, 101)(6, 22)(7, 47)(8, 72)(9, 97)(10, 18)(11, 43)(12,
68)(13, 93)(15, 39)(16, 64)(17, 89)(19, 35)(20, 60)(21, 85)(23, 31)(24, 56)(25,
81)(28, 52)(29, 77)(30, 102)(32, 48)(33, 73)(34, 98)(36, 44)(37, 69)(38, 94)(41,
65)(42, 90)(45, 61)(46, 86)(49, 57)(50, 82)(54, 78)(55, 103)(58, 74)(59, 99)(62,
70)(63, 95)(67, 91)(71, 87)(75, 83)(80, 104)(84, 100)(88, 96)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104)
C4[ 104, 2 ]
104
-1 2 80 26 104
-2 1 3 81 27
-3 2 4 82 28
-4 3 5 83 29
-5 4 6 84 30
-6 5 7 85 31
-7 6 8 86 32
-8 33 7 9 87
-9 88 34 8 10
-10 11 89 35 9
-11 12 90 36 10
-12 11 13 91 37
-13 12 14 92 38
-14 13 15 93 39
-15 14 16 94 40
-16 15 17 95 41
-17 16 18 96 42
-18 17 19 97 43
-19 44 18 20 98
-20 99 45 19 21
-21 22 100 46 20
-22 23 101 47 21
-23 22 24 102 48
-24 23 25 103 49
-25 24 26 104 50
-26 1 25 27 51
-27 2 26 28 52
-28 3 27 29 53
-29 4 28 30 54
-30 55 5 29 31
-31 56 6 30 32
-32 33 57 7 31
-33 34 58 8 32
-34 33 35 59 9
-35 34 36 60 10
-36 11 35 37 61
-37 12 36 38 62
-38 13 37 39 63
-39 14 38 40 64
-40 15 39 41 65
-41 66 16 40 42
-42 67 17 41 43
-43 44 68 18 42
-44 45 69 19 43
-45 44 46 70 20
-46 45 47 71 21
-47 22 46 48 72
-48 23 47 49 73
-49 24 48 50 74
-50 25 49 51 75
-51 26 50 52 76
-52 77 27 51 53
-53 78 28 52 54
-54 55 79 29 53
-55 56 80 30 54
-56 55 57 81 31
-57 56 58 82 32
-58 33 57 59 83
-59 34 58 60 84
-60 35 59 61 85
-61 36 60 62 86
-62 37 61 63 87
-63 88 38 62 64
-64 89 39 63 65
-65 66 90 40 64
-66 67 91 41 65
-67 66 68 92 42
-68 67 69 93 43
-69 44 68 70 94
-70 45 69 71 95
-71 46 70 72 96
-72 47 71 73 97
-73 48 72 74 98
-74 99 49 73 75
-75 100 50 74 76
-76 77 101 51 75
-77 78 102 52 76
-78 77 79 103 53
-79 78 80 104 54
-80 55 1 79 81
-81 56 2 80 82
-82 57 3 81 83
-83 58 4 82 84
-84 59 5 83 85
-85 60 6 84 86
-86 61 7 85 87
-87 88 62 8 86
-88 89 63 9 87
-89 88 90 64 10
-90 11 89 91 65
-91 66 12 90 92
-92 67 13 91 93
-93 68 14 92 94
-94 69 15 93 95
-95 70 16 94 96
-96 71 17 95 97
-97 72 18 96 98
-98 99 73 19 97
-99 100 74 20 98
-100 99 101 75 21
-101 22 100 102 76
-102 77 23 101 103
-103 78 24 102 104
-104 1 79 25 103
0