[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 104, 4 ] =
{4,4}_10,2.
(I) Following is a form readable by MAGMA:
g:=Graph<104|{ {2, 3}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95},
{92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79},
{76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63},
{60, 61}, {58, 59}, {56, 57}, {54, 55}, {30, 31}, {28, 29}, {26, 27}, {24, 25},
{22, 23}, {20, 21}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16,
17}, {18, 19}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44,
45}, {46, 47}, {48, 49}, {50, 51}, {1, 2}, {101, 102}, {97, 98}, {93, 94}, {89,
90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57,
58}, {53, 54}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {3, 4}, {99, 100}, {91,
92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {27, 28}, {11, 12}, {19, 20}, {35,
36}, {43, 44}, {51, 52}, {48, 58}, {49, 59}, {52, 62}, {50, 60}, {51, 61}, {7,
8}, {103, 104}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {46, 56}, {47,
57}, {44, 54}, {45, 55}, {43, 53}, {15, 16}, {79, 80}, {47, 48}, {1, 53}, {2,
54}, {3, 55}, {8, 60}, {9, 61}, {10, 62}, {11, 63}, {1, 52}, {4, 56}, {5, 57},
{6, 58}, {7, 59}, {1, 63}, {31, 32}, {95, 96}, {2, 64}, {27, 89}, {26, 88}, {23,
85}, {22, 84}, {19, 81}, {3, 65}, {6, 68}, {7, 69}, {10, 72}, {11, 73}, {14,
76}, {15, 77}, {18, 80}, {30, 92}, {31, 93}, {34, 96}, {35, 97}, {38, 100}, {39,
101}, {42, 104}, {4, 66}, {29, 91}, {28, 90}, {21, 83}, {20, 82}, {5, 67}, {12,
74}, {13, 75}, {36, 98}, {37, 99}, {12, 64}, {30, 82}, {29, 81}, {28, 80}, {13,
65}, {14, 66}, {15, 67}, {31, 83}, {44, 96}, {45, 97}, {46, 98}, {47, 99}, {8,
70}, {25, 87}, {24, 86}, {9, 71}, {40, 102}, {41, 103}, {16, 68}, {27, 79}, {26,
78}, {25, 77}, {24, 76}, {17, 69}, {18, 70}, {19, 71}, {48, 100}, {49, 101},
{50, 102}, {51, 103}, {20, 72}, {52, 104}, {23, 75}, {22, 74}, {21, 73}, {53,
104}, {16, 78}, {17, 79}, {32, 84}, {33, 85}, {34, 86}, {35, 87}, {40, 92}, {41,
93}, {42, 94}, {43, 95}, {36, 88}, {37, 89}, {38, 90}, {39, 91}, {32, 94}, {33,
95}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52)(53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 52)(3, 51)(4, 50)(5, 49)(6, 48)(7, 47)(8, 46)(9, 45)(10, 44)(11, 43)(12,
42)(13, 41)(14, 40)(15, 39)(16, 38)(17, 37)(18, 36)(19, 35)(20, 34)(21, 33)(22,
32)(23, 31)(24, 30)(25, 29)(26, 28)(53, 63)(54, 62)(55, 61)(56, 60)(57, 59)(64,
104)(65, 103)(66, 102)(67, 101)(68, 100)(69, 99)(70, 98)(71, 97)(72, 96)(73,
95)(74, 94)(75, 93)(76, 92)(77, 91)(78, 90)(79, 89)(80, 88)(81, 87)(82, 86)(83,
85)
c: (2, 53, 52, 63)(3, 43, 51, 11)(4, 95, 50, 73)(5, 33, 49, 21)(6, 85, 48,
83)(7, 23, 47, 31)(8, 75, 46, 93)(9, 13, 45, 41)(10, 65, 44, 103)(12, 55, 42,
61)(14, 97, 40, 71)(15, 35, 39, 19)(16, 87, 38, 81)(17, 25, 37, 29)(18, 77, 36,
91)(20, 67, 34, 101)(22, 57, 32, 59)(24, 99, 30, 69)(26, 89, 28, 79)(54, 104,
62, 64)(56, 94, 60, 74)(58, 84)(66, 96, 102, 72)(68, 86, 100, 82)(70, 76, 98,
92)(78, 88, 90, 80)
C4[ 104, 4 ]
104
-1 2 52 63 53
-2 1 3 64 54
-3 55 2 4 65
-4 66 56 3 5
-5 67 57 4 6
-6 68 58 5 7
-7 69 59 6 8
-8 70 60 7 9
-9 71 61 8 10
-10 11 72 62 9
-11 12 73 63 10
-12 11 13 74 64
-13 12 14 75 65
-14 66 13 15 76
-15 77 67 14 16
-16 78 68 15 17
-17 79 69 16 18
-18 80 70 17 19
-19 81 71 18 20
-20 82 72 19 21
-21 22 83 73 20
-22 23 84 74 21
-23 22 24 85 75
-24 23 25 86 76
-25 77 24 26 87
-26 88 78 25 27
-27 89 79 26 28
-28 90 80 27 29
-29 91 81 28 30
-30 92 82 29 31
-31 93 83 30 32
-32 33 94 84 31
-33 34 95 85 32
-34 33 35 96 86
-35 34 36 97 87
-36 88 35 37 98
-37 99 89 36 38
-38 100 90 37 39
-39 101 91 38 40
-40 102 92 39 41
-41 103 93 40 42
-42 104 94 41 43
-43 44 95 42 53
-44 45 96 43 54
-45 44 55 46 97
-46 45 56 47 98
-47 99 46 57 48
-48 100 47 58 49
-49 101 48 59 50
-50 102 49 60 51
-51 103 50 61 52
-52 1 104 51 62
-53 1 104 43 54
-54 44 55 2 53
-55 45 56 3 54
-56 55 46 57 4
-57 56 47 58 5
-58 57 48 59 6
-59 58 49 60 7
-60 59 50 61 8
-61 60 51 62 9
-62 61 52 63 10
-63 11 1 62 64
-64 12 2 63 65
-65 66 13 3 64
-66 67 14 4 65
-67 66 68 15 5
-68 67 69 16 6
-69 68 70 17 7
-70 69 71 18 8
-71 70 72 19 9
-72 71 73 20 10
-73 11 72 74 21
-74 22 12 73 75
-75 23 13 74 76
-76 77 24 14 75
-77 78 25 15 76
-78 77 79 26 16
-79 78 80 27 17
-80 79 81 28 18
-81 80 82 29 19
-82 81 83 30 20
-83 82 84 31 21
-84 22 83 85 32
-85 33 23 84 86
-86 34 24 85 87
-87 88 35 25 86
-88 89 36 26 87
-89 88 90 37 27
-90 89 91 38 28
-91 90 92 39 29
-92 91 93 40 30
-93 92 94 41 31
-94 93 95 42 32
-95 33 94 96 43
-96 44 34 95 97
-97 45 35 96 98
-98 99 46 36 97
-99 100 47 37 98
-100 99 101 48 38
-101 100 102 49 39
-102 101 103 50 40
-103 102 104 51 41
-104 103 52 42 53
0