[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 105, 1 ] =
C_105(1,29).
(I) Following is a form readable by MAGMA:
g:=Graph<105|{ {2, 3}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97},
{94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{32, 33}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {4, 5}, {6, 7}, {8,
9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {34, 35}, {36,
37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52,
53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {1, 2}, {101, 102}, {97,
98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65,
66}, {29, 30}, {25, 26}, {21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {33,
34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {3,
4}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {27, 28}, {11, 12}, {19,
20}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {7, 8}, {103, 104}, {87, 88}, {71,
72}, {23, 24}, {39, 40}, {55, 56}, {2, 31}, {66, 95}, {64, 93}, {32, 61}, {34,
63}, {1, 30}, {79, 80}, {65, 94}, {15, 16}, {33, 62}, {47, 48}, {3, 32}, {75,
104}, {71, 100}, {67, 96}, {31, 60}, {27, 56}, {23, 52}, {7, 36}, {11, 40}, {15,
44}, {19, 48}, {4, 33}, {76, 105}, {70, 99}, {68, 97}, {30, 59}, {28, 57}, {22,
51}, {20, 49}, {6, 35}, {12, 41}, {14, 43}, {5, 34}, {69, 98}, {29, 58}, {21,
50}, {13, 42}, {8, 37}, {74, 103}, {72, 101}, {26, 55}, {24, 53}, {10, 39}, {9,
38}, {73, 102}, {25, 54}, {16, 45}, {18, 47}, {17, 46}, {95, 96}, {31, 32}, {1,
77}, {2, 78}, {3, 79}, {16, 92}, {17, 93}, {18, 94}, {19, 95}, {4, 80}, {5, 81},
{6, 82}, {7, 83}, {12, 88}, {13, 89}, {14, 90}, {15, 91}, {8, 84}, {9, 85}, {10,
86}, {11, 87}, {35, 64}, {39, 68}, {43, 72}, {47, 76}, {51, 80}, {55, 84}, {59,
88}, {63, 92}, {36, 65}, {38, 67}, {44, 73}, {46, 75}, {52, 81}, {54, 83}, {60,
89}, {62, 91}, {37, 66}, {45, 74}, {53, 82}, {61, 90}, {1, 105}, {40, 69}, {42,
71}, {56, 85}, {58, 87}, {41, 70}, {57, 86}, {20, 96}, {29, 105}, {28, 104},
{23, 99}, {22, 98}, {21, 97}, {24, 100}, {27, 103}, {26, 102}, {25, 101}, {48,
77}, {50, 79}, {49, 78}, {63, 64} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 30)(3, 59)(4, 88)(5, 12)(6, 41)(7, 70)(8, 99)(9, 23)(10, 52)(11, 81)(13,
34)(14, 63)(15, 92)(17, 45)(18, 74)(19, 103)(20, 27)(21, 56)(22, 85)(24, 38)(25,
67)(26, 96)(28, 49)(29, 78)(32, 60)(33, 89)(35, 42)(36, 71)(37, 100)(39, 53)(40,
82)(43, 64)(44, 93)(47, 75)(48, 104)(50, 57)(51, 86)(54, 68)(55, 97)(58, 79)(62,
90)(65, 72)(66, 101)(69, 83)(73, 94)(77, 105)(80, 87)(84, 98)(95, 102) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 77)(3, 48)(4, 19)(5, 95)(6, 66)(7, 37)(9, 84)(10, 55)(11, 26)(12,
102)(13, 73)(14, 44)(16, 91)(17, 62)(18, 33)(20, 80)(21, 51)(23, 98)(24, 69)(25,
40)(27, 87)(28, 58)(30, 105)(31, 76)(32, 47)(34, 94)(35, 65)(38, 83)(39, 54)(41,
101)(42, 72)(45, 90)(46, 61)(49, 79)(52, 97)(53, 68)(56, 86)(59, 104)(60,
75)(63, 93)(67, 82)(70, 100)(74, 89)(81, 96)(88, 103)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105)
C4[ 105, 1 ]
105
-1 77 2 105 30
-2 1 78 3 31
-3 2 79 4 32
-4 33 3 80 5
-5 34 4 81 6
-6 35 5 82 7
-7 36 6 83 8
-8 37 7 84 9
-9 38 8 85 10
-10 11 39 9 86
-11 12 40 10 87
-12 11 88 13 41
-13 12 89 14 42
-14 13 90 15 43
-15 44 14 91 16
-16 45 15 92 17
-17 46 16 93 18
-18 47 17 94 19
-19 48 18 95 20
-20 49 19 96 21
-21 22 50 20 97
-22 23 51 21 98
-23 22 99 24 52
-24 23 100 25 53
-25 24 101 26 54
-26 55 25 102 27
-27 56 26 103 28
-28 57 27 104 29
-29 58 28 105 30
-30 1 59 29 31
-31 2 60 30 32
-32 33 3 61 31
-33 34 4 62 32
-34 33 35 5 63
-35 34 36 6 64
-36 35 37 7 65
-37 66 36 38 8
-38 67 37 39 9
-39 68 38 40 10
-40 11 69 39 41
-41 12 70 40 42
-42 13 71 41 43
-43 44 14 72 42
-44 45 15 73 43
-45 44 46 16 74
-46 45 47 17 75
-47 46 48 18 76
-48 77 47 49 19
-49 78 48 50 20
-50 79 49 51 21
-51 22 80 50 52
-52 23 81 51 53
-53 24 82 52 54
-54 55 25 83 53
-55 56 26 84 54
-56 55 57 27 85
-57 56 58 28 86
-58 57 59 29 87
-59 88 58 60 30
-60 89 59 61 31
-61 90 60 62 32
-62 33 91 61 63
-63 34 92 62 64
-64 35 93 63 65
-65 66 36 94 64
-66 67 37 95 65
-67 66 68 38 96
-68 67 69 39 97
-69 68 70 40 98
-70 99 69 71 41
-71 100 70 72 42
-72 101 71 73 43
-73 44 102 72 74
-74 45 103 73 75
-75 46 104 74 76
-76 77 47 105 75
-77 1 78 48 76
-78 77 2 79 49
-79 78 3 80 50
-80 79 4 81 51
-81 80 5 82 52
-82 81 6 83 53
-83 82 7 84 54
-84 55 83 8 85
-85 56 84 9 86
-86 57 85 10 87
-87 11 88 58 86
-88 12 89 59 87
-89 88 13 90 60
-90 89 14 91 61
-91 90 15 92 62
-92 91 16 93 63
-93 92 17 94 64
-94 93 18 95 65
-95 66 94 19 96
-96 67 95 20 97
-97 68 96 21 98
-98 22 99 69 97
-99 23 100 70 98
-100 99 24 101 71
-101 100 25 102 72
-102 101 26 103 73
-103 102 27 104 74
-104 103 28 105 75
-105 1 104 29 76
0